
D3.4 - Final Platform Design

Project title: Accelerating the lab to market transition of AI tools for cancer management

Grant Agreement: 952172

Call identifier: H2020-SC1-FA-DTS-2019-1

Topic: DT-TDS-05-2020 AI for Health Imaging

D3.4. Final Platform Design

Leader partner: Universitat Politècnica de València (UPV)

Author(s): UPV: Ignacio Blanquer, Andrei S. Alic , Sergio López Huguet
and Pau Lozano y J. Damian Segrelles Quilis

Reviewers: BAHÍA: Juan Prieto-Pena, Javier Pena Rendo
UM: Henry Woodruff, Anke Wind

Work Package: WP3

Due date: Month 18

Actual delivery date: 28/02/2022

Type: R

Dissemination level: PU



D3.4 - Final Platform Design

Table of contents
1. Introduction 8

1.1. Scope of the Document 8

1.2. Target Audience 8

1.3. Structure of the Document 8

2. User Roles 10

2.1. Cloud Services and Security Manager 11

2.2. Authorised Technical Data Manager 12

2.3. Clinical Staff 12

2.4.  Dataset Administrator 13

2.5. Data Scientist 14

2.6. Application Developer 15

2.7. Data Protection Officer 16

2.8. External Researcher 16

3. Architecture 18

3.1. Components 18

3.2. Technologies 21

3.2.1. OpenStack 21

3.2.2. Infrastructure Manager (IM) 21

3.2.3. Elastic Compute Cluster in the Cloud (EC3) 22

3.2.4.  Kubernetes (K8s) 22

3.2.5. QUIBIM Precision 23

3.2.6. Apache Guacamole 24

3.2.7. Kubeapps 24

3.2.8. Keycloak 24

3.2.9. DCM4CHEE 25

3.2.10. Harbor 25

3.2.11. Ceph 25

3.2.12. BlockChain 26

3.2.13. MongoDB 27

3.2.14. Git 27

4. Use Cases 28

4.1. Authentication & Authorization 28

2



D3.4 - Final Platform Design

4.1.1. User Identity Assignment from IdP 28

4.1.2. Proof of Identity 29

4.1.3. User Authentication 30

4.1.4. User Authorisation 31

4.1.5. Role Assignment to Users 31

4.1.6. User Registration 32

4.2. Data Lake Management 32

4.2.1. In-Bulk Data Lake Ingestion 33

4.2.2. Manual Data Lake Ingestion 34

4.2.3. Data Lake Query 35

4.2.4. Update Data Lake Data 35

4.3. Dataset Management 36

4.3.1. Dataset Creation 37

4.3.2. Dataset Creation From Data Lake 38

4.3.3. Enriched Dataset Creation 39

4.3.4. External Dataset Importation 39

4.3.5. Dataset Query 40

4.3.6. Dataset Disablement 41

4.4. Processing Application Management 41

4.4.1. Processing Application Creation 42

4.4.2. Processing Application Removal 43

4.4.3. Processing Application Query 43

4.5. Standalone Application Management 44

4.5.1. Standalone Application Deployment 45

4.5.2. Standalone Application Release 45

4.5.3. Standalone Application Access Point Query 46

4.5.4. Standalone Application Access 47

4.6. Model Management 47

4.6.1. Publish Model 48

4.6.2. Unpublish Model 49

4.6.3. Model Query 49

4.7. Marketplace Management 50

4.7.1. Publish Processing or AI Tools 50

3



D3.4 - Final Platform Design

4.7.2. Unpublish Processing or AI Tools 51

4.7.3. Processing or AI Tool Query 52

4.7.4. Apply Processing or AI Tool 53

4.8. Tracing Data 53

4.8.1. Dataset History Query 54

4.8.2. Query Users who accessed a Dataset 55

4.8.3. Query Datasets Used on a Specific Model 55

4.8.4. Fingerprint Research Object Query 56

5. Requirements 58

5.1. Transversal Requirements 58

5.2. User Database 61

5.3. Data Lake Storage 62

5.4. Repository Database 64

5.5. Application Registry 65

5.6. Source Code Repository 66

5.7. Tracer Blockchain 67

5.8. Authentication & Authorisation Service 68

5.9. Data Ingestion/Access Service 69

5.10. Dataset Service 70

5.11. Tracer Service 71

5.12. Orchestrator Service 71

5.13. Standalone Access Point Service 72

5.14. User Registration Application 72

5.15. Case Explorer Application 73

5.16. Marketplace 74

5.17. Dataset Explorer Application 75

5.18. Application Dashboard 76

6. Security Considerations 78

6.1. Threat Analysis 78

6.1.1. Assumptions 78

6.1.2. Threats 78

6.1.3. Recommendations 79

6.2. Technical and Organisational Security Measures 79

4



D3.4 - Final Platform Design

6.2.1. Organisational Security Measures 79

6.2.2. Organisational Security Measures with respect to the Cloud Infrastructure 80

6.2.3. Organisational Security Measures with respect to the users of the Cloud
Infrastructure 81

6.2.4. Technical Security Measures 82

7. Conclusions 84

5



D3.4 - Final Platform Design

Abbreviations

Acronym Description

ABAC Attribute-based access control

AI Artificial Intelligence

API Application Programming Interfaces

AWS Amazon Web Service

CLUES Cloud Elasticty System

DevOps Development and Operations

DPO Data Protection Officer

EC3 Elastic Compute Cluster in the Cloud

GDPR General Data Protection Regulation

IaaS Infrastructure as a Service

IdP Identity Providers

IM Infrastructure Manager

K8s Kubernetes

LDAP Lightweight Directory Access Protocol

MIABIS Minimum Information About BIobank data Sharing

OCI Open Container Initiative

OIDC OpenID Connect

OASIS Organization for the Advancement of Structured Information Standards

PACS Picture Archiving and Communication System

PID Persistent Identifier

RBAC Role-based access control

RDBMS Database Management Systems

RDP Remote Desktop Protocol

RIS Radiology Information System

SAML Security Assertion Markup Language

SSH Secure SHell

TOSCA Topology and Orchestration Specification for Cloud Application

6



D3.4 - Final Platform Design

UML Unified Modelling Language

UUID Universally Unique IDentifier

VMI Virtual Machine Image

VNC Virtual Network Computing

WADO-RS Web Access to DICOM Objects Restful Service

Disclaimer
The opinions stated in this report reflect the opinions of the authors and not the opinion of the
European Commission.

All intellectual property rights are owned by the consortium of CHAIMELEON under terms stated
in their Consortium Agreement and are protected by the applicable laws. Reproduction is not
authorised without prior written agreement. The commercial use of any information contained in
this document may require a licence from the owner of the information.

7



D3.4 - Final Platform Design

1. Introduction
One of the objectives of the CHAIMELEON project is to design an EU-wide interoperable
repository (CHAIMELEON Repository). The repository will provide storage resources to
share health images, related clinical data and molecular data from pathology and liquid
biopsy samples. Also, the repository will provide advanced computational cloud
infrastructures to process these data as valuable resources for the AI community to develop
and test practical tools (such as Quantitative Imaging biomarkers) for improved cancer
management applications. These tools will be validated in the application context of four
organs: lung, colorectal, breast and prostate. The repository must be supported by a
distributed infrastructure which it has built on existing initiatives at the levels of European,
national, regional and individual centres.

The deliverable “D.3.4. Final Platform Design'' describes the final platform design of the
CHAIMELEON Repository. The content is an extension of the “D.3.3. Interim Platform
Design” where the architecture components, use cases and requirement specifications have
been refined and extended.

1.1. Scope of the Document
This document constitutes a deliverable report of WP3. It covers the final design architecture
to implement the CHAIMELEON Repository.

This document uses as input “D3.1 Accessible Imaging Health Data Map” and especially
“D3.2 Requirements and Standards for CHAIMELEON Platform'' and “D.3.3. Interim Platform
Design” to identify: a) components that compose the final repository design; b) actors and
functional requirements (User Roles and Actions); b) interactions (Use Cases) among
components of the architecture to support the identified User Role actions; c) and
non-functional requirements (e.g. standards or common data models).

1.2. Target Audience
The document serves both internally and externally to the consortium. The document gathers
and describes the Components of the architecture, User Roles and Actions, Use Cases
and Requirements collected from the different meetings and interactions with the users. This
information will serve the developers to design and implement properly the CHAIMELEON
Repository and the consortium partners that will use it as a guideline on what they should
expect.

The document could also serve external readers interested in building up a repository,
reusing both the experience and the components. As most of the components are released
under Open-Source licenses, external readers could find in this document an applicable
solution that could address similar problems.

Finally, it serves project coordination and reviewers as evidence to support the achievement
of milestones.

1.3. Structure of the Document
This document starts with this introduction. Section 2 describes the User Roles and the
Actions they can perform in the CHAMELEON Repository (functional requirements).

8



D3.4 - Final Platform Design

Section 3 presents the final design of the repository, describing the components that will be
integrated and the technologies that will be used for its implementation. Then, Section 4
describes in detail the interactions among the architecture components to support the actions
that can be carried out for each user role. Next, Section 5 presents all the requirements
defined to be considered. Section 6 describes at architecture level the threat analysis and the
recommendations for the set up and configuration of the components regarding security.
Finally, section 7 ends with the conclusions.

9



D3.4 - Final Platform Design

2. User Roles
This section focuses on the User Roles, which generalise those users interacting with the
Repository. Depending on the roles assigned to a user, they can perform specific Actions
corresponding to functional requirements (e.g. ingest data, create Datasets, deploy
Standalone Application, publish Processing and AI Tools etc.), which start an interaction flow
(Use Cases) supported by the components of the final architecture (see section 3).

Figure 1 Generic User Roles Identified.

The User Roles identified (see figure 1) have been refined with respect to deliverable D3.3.
For each Role, a detailed description is presented, including the specific list of Actions
(functional requirements) for which it is enabled to carry out and the Use Case (see
Section 4) where these actions take place. Also, the partners of the consortium that will
assume the user roles are identified.

Regarding the list of actions, table 1 shows the common actions that can be carried out by all
user roles (any User).

Table 1. List of actions enabled to all Roles.

Action Description Use Case

Request Identity S(he) creates an identity through an existing Identity Provider
supported by CHAIMELEON Repository.

User Identity
Assignment from IdP

Perform Proof of Identity The applicant is verified as a real user who belongs to a given
institution or organisation accepted by the CHAIMELEON Committee.

Proof of Identity

Authenticate S(he) authenticates in any of the CHAIMELEON Repository
components.

User Authentication

Authorise S(he) is authorised by a component to carry out a specific Action in the
CHAIMELEON Repository.

User Authorisation

10



D3.4 - Final Platform Design

Request Sign Up The applicant initiates the process to be validated (proof of identity) by
the CHAIMELEON Committee and registered in the repository with a
set of specific roles.

User Registration

2.1. Cloud Services and Security Manager

Cloud Services and Security Manager role is in charge of the management of the
CHAIMELEON Repository. The actions carried out by this role are the following:

● Infrastructure Management. To manage the Infrastructure as a Service (IaaS), the
Development and Operations (DevOps) and the building of the containers that host
the Processing Applications. These tasks serve to automate the deployment of virtual
infrastructures comprising the components of CHAIMELEON Repository running and
also the components set up on top of them in a secure and agile way.

● Assign Roles to Accepted Users. To manage the users accepted by the
CHAIMELEON Access Committee, which analyses and approves all the user access
requests. The Cloud Services and Security Manager User is in charge of the
assignment of User Roles (see figure 1) in the base of the actions to perform in the
repository  requested by the users.

● Security Management. To manage security issues of the CHAIMELEON Repository.
This user will make the security assessment, risk evaluation, apply software patches,
subscribe to security vulnerability bulletins, validate backups and act as a contact
point for security incidents.

UPV assumes this role in the CHAIMELEON project.

The actions that are enabled to this role are shown in table 2.

Table 2. List of actions enabled to the Cloud Services and Security Manager Role.

Action Description Use Case

Assign Roles to a User S(he) assigns user roles to a given user who has previously been
accepted by the CHAIMELEON Committee.

Role Assignment to Users

Verify Proof of Identity S(he) consults to CHAIMELEON Committee if a given user has
previously been verified as a real person and that s(he) belongs
to an accepted organisation.

User Registration

Register a Processing
Application

S(he) registers a Processing Application (Standalone
Applications and Processing or AI Applications) in the
Application Registry.

Processing Application
Creation

Search for a Processing
Application

S(he) browses and chooses a Processing Application
(Standalone Applications and Processing or AI Applications)
registered in the Application Registry.

Processing Application
Query

Unregister a Processing
Application

S(he) unregisters a Processing Application (Standalone
Applications and Processing or AI Applications) from the
Application Registry.

Processing Application
Removal

Release a Standalone
Application

S(he) undeploys a Standalone Application that is running on
CHAIMELEON Repository cloud, releasing the cloud resources
used.

Standalone Application
Release

Browse Marketplace of S(he) browses the Marketplace to choose Processing and AI Processing and AI Tool

11



D3.4 - Final Platform Design

Tools Tools published in this catalogue. Query

Unpublish a Tool S(he) removes a Processing or AI Tools from the Marketplace,
maintaining the associated Processing and AI Application in the
Application Registry for its traceability.

Unpublish Processing and AI
Tools

2.2. Authorised Technical Data Manager
Authorised Technical Data Manager role deals with the preparation of medical data (clinical
data and associated medical images) to be ingested into the Data Lake of the CHAIMELEON
Repository. This data preparation includes tasks of collaboration with the Clinical staff for the
selection of cases and tasks, such as de-identification, anonymisation and curation, to name
a few, which are performed at the data providers centres using specific tools (e.g. Medexprim
Suite(™)). These tasks are carried out entirely on the medical centre side and do not require
access rights to the repository. This will be supported by the resources of the hospitals, as
this information is not yet anonymised.

After performing these tasks, the Authorised Technical Data Manager has access rights to
ingest the fully anonymised and curated prepared medical data to the Data Lake through
services and applications provided by the CHAIMELEON Repository.

This role is present in every medical centre contributing medical data to the repository.
Partners supporting this role are HULAFE, CERF, PSD, ULS, UNIPI, CHA, UM, CHUP.

The actions that are enabled to this role are shown in table 3.

Table 3. List of actions enabled to the Authorised Technical Data Manager.

Action Description Use Case

Ingest Patient Cases
In-Bulk

S(he) ingests a set of patient cases (images and clinical data
associated collected in an e-Form) into Data Lake of the
CHAIMELEON Repository through an In-bulk ingestion
application located in a medical centre (e.g. hospitals).

In-Bulk Data Lake Ingestion

Ingest Patient Case
Manually

S(he) ingests a patient case (Images and clinical data
associated collected in an e-Form) manually into Data Lake of
the CHAIMELEON Repository.

Manual Data Lake Ingestion

Browse Patient Cases S(he) browses patient cases (images and associated clinical
data) stored in the Data Lake of the repository to select
specific cases and update them due to incorrect detected
data.

Data Lake Query

Update Patient Case S(he) updates data (images and/or associated clinical data)
stored in the Data Lake of the repository due to being
incorrect.

Update Data Lake Data

2.3. Clinical Staff
Clinical Staff role deals with both the provision (data provider) and consumption (exploration
and processing) of medical data (data consumer) and the use of high-level data Processing
and AI tools provided by the Marketplace of the CHAIMELEON Repository (tool consumer).

12



D3.4 - Final Platform Design

As a data provider, the main tasks of this Role correspond to the selection of medical data
from the different sources located in the medical centres (e.g. PACS, RIS, Clinical Data
Bases) to be uploaded into the Data Lake by the Authorised Technical Data Manager. These
tasks are carried out entirely on the medical centre side, following their own protocols and
procedures, and do not require access rights to the repository.

As data and tool consumers, clinical staff use the Processing and AI Tools provided by the
Marketplace, as well as inspect the data available in the Case Explorer Application. The
Processing and AI Tools are used to annotate, segment, enhance or extract knowledge from
the medical data to improve diagnosis, prognosis, treatment diagnosis and so on.

Partners supporting this role are HULAFE, CERF, PSD, ULS, UNIPI, CHA, UM, CHUP.

The actions that are enabled to this role are listed in table 4.

Table 4. List of actions enabled to the Clinical Staff.

Action Description Use Case

Browse Marketplace of
Tools

S(he) browses the Marketplace to choose Processing and AI
Tools published in this catalogue.

Processing and AI Tool
Query

Apply Tool S(he) employs a Processing or AI tool published in the
Marketplace to improve clinical processes such as diagnosis,
prognosis and treatment follow-up.

Apply Processing or AI Tools

Browse Patient Cases S(he) browses patient cases (images and associated clinical
data) stored in the Data Lake of the repository to select
specific cases.

Data Lake Query

2.4.  Dataset Administrator
Dataset Administrator role deals with the registration of Datasets from the Data Lake that are
used by the researchers. A Dataset can be considered as a publication of a research object
that comprises a coherent subset of medical data and is identified through a unique
Persistent Identifier. A research object (datasets or trained ai models) has a PID assigned
and resolvable linked to an info page in which aggregated information is presented (e.g.
author, provider). Along with this information, it has a fingerprint as a unique checksum that
could be computed by the user, so the veracity of the data available (Model or Dataset) can
be attested.

A dataset could not be modified once registered, except for specific metadata fields (contact
person or description). Datasets will have a Persistent Identifier (PID) assigned, so to ensure
reproducibility, the CHAIMELEON platform will not allow changing the data, as changing a
dataset may lead to different results and incoherences in the reproducibility. If a dataset
needs to be changed, a new dataset should be created. Therefore, all the references to the
previous dataset will remain valid. A faulty dataset can be invalidated.

Partners supporting this role are CERF, ULS, PSD  and HULAFE.

The actions that are enabled to this role are shown in table 5.

13



D3.4 - Final Platform Design

Table 5. List of actions enabled to the Dataset Administrator.

Action Description Use Case

Create a Dataset S(he) chooses a set of data (medical images and clinical
data) from Data Lake and creates a Dataset in the Repository
Database. Data has been previously uploaded by an
Authorised and Technical Data Manager.

Dataset Creation
- Dataset Creation

From Data Lake.
- Enriched Dataset

Creation.
- External Dataset

Importation

Create an Enriched Dataset S(he) creates a Dataset in the Repository Database based on
an existing Dataset and enriched data computed through
Standalone Applications.

Enriched Dataset Creation

Import a Dataset S(he) creates a Dataset in the Repository Database using
data sources from external institutions.

External Dataset Importation

Disable a Dataset S(he) disables a given Dataset. A Dataset may be obsolete or
have entries for which consent has been revoked.

Dataset Disablement

Browse for a Dataset S(he) browses and chooses existing Datasets in the
Repository Database.

Dataset Query

2.5. Data Scientist
Data Scientist role deals with accessing a Dataset available in the CHAIMELEON Repository
and analysing it in a specific processing environment (Standalone Processing Applications)
for building new AI models that will be published as a publication of a research object. This
user will have access rights to console applications with processing tools (Standalone
Applications) and is able to register the trained AI models and tools developed in the
Marketplace. Also, the user is also able to trace the usage of AI models and to use other
models for comparison.

If a faulty image is found, a data scientist should inform the "creator" of the dataset (the
dataset manager, included in the metadata) about this fault. Data scientists are not
authorized to ingest new official data in the repository, so they cannot feed them back (again,
for reproducibility reasons). The dataset manager can invalidate a dataset with a faulty image
and create a new one. Then, the ingestion and update of images are always performed on
the case explorer application.

Partners supporting this role are HULAFE, CHA, BGU, IMPERIAL, QUIBIM, BAHIA, GEHC.

The actions that are enabled to this role are shown in table 6.

Table 6. List of actions enabled to the Data Scientist.

Action Description Use Case

Browse for a Dataset S(he) browses and chooses existing Datasets in the
Repository Database.

Dataset Query

Search for a Processing
Application

S(he) browses the Application Registry for a Processing
Application (both Standalone and Processing/AI Applications)

Processing Application
Query

Deploy a Standalone
Application

S(he) deploys Processing Applications (Standalone
Applications or Processing/AI Applications) on the cloud
resources of the CHAIMELEON repository.

Standalone Application
Deployment

14



D3.4 - Final Platform Design

Release a Standalone
Application

S(he) undeploys a given Standalone Application and releases
the cloud resources used.

Standalone Application
Release

Browse Standalone Access
Points

S(he) searches for the access point of a deployed Standalone
Application.

Standalone Application
Access Point Query

Access to a Standalone
Application

S(he) access to a given running Standalone Application
through remote desktop or SSH protocols.

Standalone Application
Access

Browse Marketplace of
Tools

S(he) browses the Marketplace to choose Processing and AI
Tools published in this catalogue.

Processing and AI Tool
Query

Apply Tool S(he) employs a Processing or AI tool published in the
Marketplace to compare with his/her own processing or AI
models.

Apply Processing or AI Tools

Publish Model S(he) publishes his/her Model in the Source code Repository. Publish Model

Unpublish Model S(he) unpublished his/her Model in the Source code
Repository.

Unpublish Model

Browse The Model
Repository

S(he) searches for Models published in the Source Code
Repository.

Model Query

2.6. Application Developer
Application Developer role deals with the building of software tools (such as tools exploiting
the AI trained models, segmentation tools, analytical engine tools) that could be used by the
Clinical Staff to carry out diagnosis, prognosis, follow-up or by Data Scientists for data
analytics. All these software tools are provided as containerised applications by the
CHAIMELEON Repository and are embedded in the repository by the Cloud Services
Manager.

Partners supporting this role are CHA, BGU, IMPERIAL, QUIBIM, BAHIA, GEHC, MEDEX.

The actions that are enabled to this role are shown in table 7.

Table 7. List of actions enabled to the Application Developer.

Action Description Use Case

Browse for a Dataset S(he) browses and chooses existing Datasets in the
Repository Database.

Dataset Query

Search for a Processing
Application

S(he) browses the Application Registry for a Processing
Application (both Standalone and Processing/AI Applications)

Processing Application
Query

Deploy a Standalone
Application

S(he) deploys Processing Applications (Standalone
Applications or Processing/AI Applications) on the cloud
resources of the CHAIMELEON repository.

Standalone Application
Deployment

Release a Standalone
Application

S(he) undeploys a given Standalone Application and releases
the cloud resources used.

Standalone Application
Release

Browse Standalone Access
Points

S(he) searches for the access point of a deployed Standalone
Application.

Standalone Application
Access Point Query

Access to a Standalone
Application

S(he) access to a given running Standalone Application
through remote desktop or SSH protocols.

Standalone Application

15



D3.4 - Final Platform Design

Access

Publish a Tool S(he) publishes in the marketplace a Processing or AI Tool.
These tools provide the means to extract knowledge to assist
in research, diagnosis, prognosis and treatment follow-on.

Publish Processing or AI
Tools

Unpublish a tool S(he) removes a Processing or AI Tools from the
Marketplace, maintaining the associated Processing and AI
Application in the Application Registry for its traceability.

Unpublish Processing and AI
Tools

Browse Marketplace of
Tools

S(he) browses the Marketplace to choose Processing and AI
Tools published in this catalogue..

Processing and AI Tool
Query

Apply Tool S(he) employs a Processing or AI tool published in the
Marketplace to compare with his/her own processing or AI
models.

Apply Processing or AI Tools

Browse The Model
Repository

S(he) searches for Models published in the Source Code
Repository.

Model Query

2.7. Data Protection Officer
Data Protection Officer role deals with the surveillance of the fulfilment of the data protection
regulations and the traceability of the data usage along with the project.

Partners supporting this role are clinical centres (HULAFE, CERF, PSD, ULS, UNIPI,
CHARITE, UM, CHUP).

The actions that are enabled to this role are shown in table 8.

Table 8. List of actions enabled by the Data Protection Officer.

Action Description Use Case

Consult Dataset History S(he) retrieves the full set of operations performed on a given
Dataset.

Dataset History Query

Consult Accessed Datasets
of a User

S(he) retrieves the details of the users who have used a given
Dataset.

Query users who accessed a
Dataset

Consult Datasets of a
Model

S(he) retrieves the aggregated information of the Dataset that
has been employed to develop a model.

Query Datasets used on a
Specific Model

Consult Research Object
Fingerprint

S(he) consults the fingerprint of a specific research object
(dataset or model).

Fingerprint Research Object
Query

2.8. External Researcher
External Researcher role deals with browsing the aggregated information of the AI tools and
models published in the marketplaces and Source Code Repository to get an appraisal of the
potential interest that she may have in the CHAIMELEON Repository. This user has limited
access rights to the repository and eventually can access the Datasets, Processing
Applications and Tools provided by the repository.

If a faulty image is found by an External Researcher, s(he) should inform the "creator" of the
dataset (the Dataset Manager, included in the metadata) about this fault as it happens in the

16



D3.4 - Final Platform Design

Data Scientist Role when s(he) finds one. Then, the Dataset Manager proceeds the same
way.

Data scientists are not authorized to ingest new official data in the repository, so they cannot
feed them back (again, for reproducibility reasons). The dataset manager can invalidate a
dataset with a faulty image and create a new one. Then, the ingestion and update of images
are always performed on the case explorer application.

Partners supporting this role are external researchers to the consortium.

The actions that are enabled to this role are shown in table 9.

Table 9. List of actions enabled to the External Researcher.

Action Description Use Case

Browse for a Dataset S(he) browses and chooses existing Datasets in the
Repository Database.

Dataset Query

Search for a Processing
Application

S(he) browses the Application Registry for a Processing
Application (both Standalone and Processing/AI Applications)

Processing Application
Query

Deploy a Standalone
Application

S(he) deploys Processing Applications (Standalone
Applications or Processing/AI Applications) on the cloud
resources of the CHAIMELEON repository.

Standalone Application
Deployment

Release a Standalone
Application

S(he) undeploys a given Standalone Application and releases
the cloud resources used.

Standalone Application
Release

Browse Standalone Access
Points

S(he) searches for the access point of a deployed Standalone
Application.

Standalone Application
Access Point Query

Access to a Standalone
Application

S(he) access to a given running Standalone Application
through remote desktop or SSH protocols.

Standalone Application
Access

Browse Marketplace of
Tools

S(he) browses the Marketplace to choose Processing and AI
Tools published in this catalogue.

Processing and AI Tool
Query

Apply Tool S(he) employs a Processing or AI tool published in the
Marketplace to compare with his/her own processing or AI
models.

Apply Processing or AI Tools

Publish Model S(he) publishes his/her Model in the Source code Repository. Publish Model

Unpublish Model S(he) unpublished his/her Model in the Source code
Repository.

Unpublish Model

Browse The Model
Repository

S(he) searches for Models published in the Source Code
Repository.

Model Query

17



D3.4 - Final Platform Design

3. Architecture
This section presents a general view of the CHAIMELEON Platform Architecture. Figure 2
shows the Components defined in architecture without depicting any interaction. Also, the
figure shows the technologies considered for its implementation. All Components inside the
boundaries of the CHAIMELEON Repository are connected through an internal private
overlay network. This network is created by the Orchestrator Service (K8s in the figure), and
it is only accessible by the containers that run the applications.

The role actions defined in Section 2 (see from table 1 to table 9) supported by the
Components will be outlined in the use cases (see section 4).

Figure 2. Identified Components of the Final CHAIMELEON Architecture.

3.1. Components
All Components of the architecture are described below. There are components that are
running inside the CHAIMELEON Repository, employing the Cloud infrastructure provided by
the UPV Cloud platform. Also, there are components that are running outside of the
CHAIMELEON Repository boundaries, such as MEDEXPRIM Suite running in the medical
centres for collecting and anonymizing data to ingest into the repository (managed internally

18



D3.4 - Final Platform Design

at the data providers with their own resources), or IdP supported by external entities to
manage the authentication of the users, also managed externally by the Identity Providers.

Inside the boundaries of the CHAIMELEON Repository, there are five types of components
which are the following:

● Storages. They provide data persistence (including medical data, application binaries
and specifications, traceability logs, users’ profiles) in the CHAIMELEON Repository.
Storages are uniquely managed by Services or Applications and cannot be accessed
directly by the end-users.

● Platform Applications are Applications providing the end-users with the
functionalities (user actions) offered by the CHAIMELEON Repository through
user-friendly interfaces. The users will mainly interact with the repository through
these applications that implement the functionalities through the Services.

● Services. This component provides the functionality required by the end user's
applications (Platform Applications), interaction with resources such as the Storage,
and the processing back-ends. Some of them will be internal services (they will not be
accessible even to application developers), and some others (e.g., Access/Ingestion
service) will allow direct interaction with other applications of the Repository offering
specific functionalities such as the data Ingestion in bulk mode.

● Processing Applications. They are hosted by the CHAIMELEON Repository and
are used for data processing and analysis. These applications run and are set up on
the CHAIMELEON Cloud Resources. There are two types of processing applications:
Standalone Applications that are deployed on-demand and Processing and AI Tools
that are managed in the Marketplace integrated with the Case Explorer Application.

The identified Storages are the following:

● User Database. This storage provides the persistence of all the information related to
the identity of the users and their roles and capabilities in the repository.

● Data Lake. This storage provides the persistence of observational and research
medical data coming from the medical centres. Data will be fully anonymised and
comprises clinical data and its associated medical images. They are tentatively
organised into four thematic sections, which are breast, lung, prostate and colorectal
cancer.

● Repository Database (Datasets). This storage provides the persistence of Datasets.
Datasets are research objects uniquely identified that comprise a coherent set of
clinical data (copied from Data Lake) and references to its associated medical images
(hosted at Data Lake). The Repository Database stores data in an appropriate way to
minimise data replication but ensure data consistency, reusability and traceability.

● Application Registry. This storage provides the persistence of Processing
Applications and Platform Applications as containers. Applications able to run on the
CHAIMELEON Repository will be stored on an internal and secure registry of
container images and deployment recipes, describing the application topology
specifications for those applications which require different storage and computing
resources to run and set up.

19



D3.4 - Final Platform Design

● Source Code Repository. This repository provides the persistence of the source
code of the analytic algorithms and AI-trained model data to be shared and used in
the project.

● Tracer Blockchain. This storage provides the persistence of all data generated
regarding the use and traceability of the Datasets and the development of Processing
and AI tools.

The identified Services are the following:

● Authentication and Authorisation Service. This service provides to the User
Database all functionalities to generate a user identity with aggregate information
(e.g. institution, groups, role, capabilities). It also provides all the required information
to Platform Applications, Services and Processing Applications to implement their
user authentication and authorisation processes.

● Data Ingestion/Access Service. This service provides all the necessary
functionalities to the Platform Applications to manage the Data Lake data such as
insertion, updating or selection of data. Also, this service allows the medical centres
to connect their applications for in bulk data ingestion into the Data Lake.

● Dataset Service. This service provides all necessary functionalities to the Platform
Applications, Services and Processing Applications to manage the registration of a
Dataset as a set of image references hosted at Data Lake and clinical data copied
from Data Lake. Furthermore, it includes functionalities to the creation of the Dataset
access as Volumes.

● Tracer Service. This service provides all necessary functionalities to the Services to
register the operations related to the creation and access to Datasets and AI tools.

● Orchestrator Service: This service provides all necessary functionalities to the
Platform Applications to manage Processing Applications (containerised applications)
and their cloud resources. It will deploy, inspect, update and release Processing
Applications in the CHAIMELEON Cloud Resources.

● Standalone Access Point Service. This Service provides all necessary
functionalities to connect to Standalone Applications which are running in the cloud
resources of the Repository.

The Platform Applications are the following:

● User Registration Application. This application provides Users with a user-friendly
web interface to sign up in the CHAIMELEON Repository with a specific Role,
assigning their membership to groups and capabilities. In addition, it provides
administrators with a web interface to validate the documentation required for
registration and proof of entity and thus accept or deny a user registration.

● Case Explorer Application: This application provides the Users with a user-friendly
web interface to manage the information in the Data Lake. Also, functionalities to
select a set of data for creating a Dataset are provided.

● Marketplace. This application provides a market of Processing and AI tools. It allows
Data Scientists and Developers to publish their Processing and AI tools (Processing

20



D3.4 - Final Platform Design

Applications), and allows Clinical Staff to employ them in the medical centres for fine
diagnosis, prognosis, follow-up treatment and so on.

● Dataset Explorer Application. This application provides a user-friendly web
interface to explore the existing Datasets and to retrieve information about their
usage. It also is used to gather the Dataset identifiers to be acceded by a Processing
Application.

● Application Dashboard. This dashboard provides a user-friendly web interface that
enables Users to deploy applications such as data science AI frameworks, data
exploration environments or system consoles to access and process the data. This
application is able to query the Application Registry and is able to deploy the
Processing Applications through the Orchestrator.

The Processing Applications are defined by the Users and can be deployed on-demand by
Users on CHAIMELEON Repository Cloud Resources. There are two types of Processing
Applications. They are the following:

● Processing or AI Applications. These are processing applications or trained AI
models embedded as applications to extract knowledge from medical images and
clinical data to fine diagnosis, prognosis, follow-up of treatments and so on. These
Processing Applications are managed by the Marketplace of the CHAIMELEON
Repository.

● Standalone Applications. These are interactive applications for exploring and
processing existent Datasets of the CHAIMELEON Repository. These Processing
Applications are stored in the Application Registry. Some examples of this type of
application are analytical engines (provided by BAHIA), harmonisation tools (provided
by Imperial College and QUIBIM), tools for ensuring that the Images harmonised are
Secure (provided by BGU) and tools and frameworks for AI developers such as
Jupyter server with Tensorflow or Pytorch.

3.2. Technologies
Most of the components described above is released under open-source technologies.

The next subsections describe the technologies involved in the deployment of the
infrastructure that supports the Components and their implementation. This document is the
final architecture design, although changes may occur during the deployment phase (D4.2
Interim Repository deployment and D4.3 Final Repository deployment). Moreover, a
long-term plan on technology update will be drawn in D10.2 Action plan for Repository
sustainability.

3.2.1. OpenStack

OpenStack is a cloud management system that controls large pools of computing, storage,1

and networking resources throughout a data centre, all managed and provisioned through
APIs with common authentication mechanisms. Beyond standard infrastructure-as-a-service
functionality, additional components provide orchestration, fault management and service
management amongst other services to ensure high availability of user applications.

1 https://www.openstack.org

21



D3.4 - Final Platform Design

In the context of the CHAIMELEON project, this technology will be used to manage the cloud
resources provided by the repository.

3.2.2. Infrastructure Manager (IM)

The Infrastructure Manager (IM) enables the deployment of computing infrastructures on cloud2

providers. IM is a tool that deploys complex and customised virtual infrastructures on multiple
back-ends. The IM automates the Virtual Machine Image (VMI) selection, deployment,
configuration, software installation, monitoring and update of virtual infrastructures. It supports a
wide variety of back-ends, making user applications Cloud agnostic. In addition, it features
Development and Operation (DevOps) capabilities. DevOps is an approach in which the
deployment and configuration of infrastructures mainly based on virtual resources are automated
to be triggered forth and back to test and deploy updates on production infrastructures. Moreover,
it also provides platform independence, facilitating the migration to a different backend. IM uses
Ansible , a declarative language to describe resources and software configuration, to enable the3

installation and configuration of all the user required applications providing the user with a fully
functional infrastructure. IM has been developed by UPV-I3M.

In the context of the CHAIMELEON project, this technology will be used to implement the
deployment of the Components of the Architecture.

IM supports Topology and Orchestration Specification for Cloud Applications (TOSCA) that it4

is a standard created by the Organisation for the Advancement of Structured Information
Standards (OASIS).

The idea behind the TOSCA standard is to define service templates consisting of different
components and the relationships among these different parts. TOSCA helps configure
applications and their underlying infrastructure as well as enable moving applications in the
cloud. Also, all required orchestration policies and resources can be defined using templates
dedicated for that purpose.

The TOSCA standard has the main goal of answering the need for automation, portability,
and interoperability along with the management challenges of complex cloud applications.

In the context of CHAIMELEON, TOSCA will be used to describe the topology of all
Processing Applications to deploy on the cloud resources of the CHAIMELEON Repository.

3.2.3. Elastic Compute Cluster in the Cloud (EC3)

The Elastic Compute Cluster in the Cloud (EC3) is a technology developed by the UPV-I3M5

that enables the deployment of virtual elastic hybrid clusters across Cloud infrastructures. It
consists of a set of recipes and a command-line interface used as a client for the IM to
deploy a custom front-end node of a virtual cluster that features: i) an instance of an IM to
provision for additional computing resources (working nodes); ii) Cloud Elasticity System
(CLUES), implementing the elasticity rules considering the state of the Local Resource
Management System (LRMS) and iii) the specific configuration for the virtual cluster required
for the execution of the applications that will be run on the cluster.

EC3 is also offered as a free online service to deploy on-demand elastic virtual clusters on
Amazon Web Services, OpenNebula and OpenStack.

5 www.grycap.upv.es/ec3, Apache License, Version 2.0
4 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
3 https://www.redhat.com/en/topics/automation/learning-ansible-tutorial
2 https://www.grycap.upv.es/im/ GNU General Public License - version 3.0

22

http://www.grycap.upv.es/ec3
https://www.redhat.com/en/topics/automation/learning-ansible-tutorial
https://www.grycap.upv.es/im/


D3.4 - Final Platform Design

In the context of the CHAIMELEON project, EC3 will be used to implement the Flexible and
Elastic Management of Cloud Resources.

3.2.4.  Kubernetes (K8s)

Kubernetes (K8s) is an open-source orchestration system for Docker containers, although6

can be configured for running other OCI compliant containers. Kubernetes schedules and7

runs containerised applications on clusters of physical or virtual machines. Kubernetes can
run on various platforms in local machines (such as minikube), cloud-managed solutions
(such as Google Container Engine or Azure Container Service ) and cloud platforms.8 9

Kubernetes clusters are composed of two types of nodes (master and workers) and a set of
core components. The master node runs the services that support the connectivity among
containers in the nodes (kube-dns), the internal database (etcd) and the main service that
manages all the functionalities (kube-apiserver). The worker nodes are managed through the
master node and run the connection services and the containers that host the applications.

Kubernetes provides different methods for authenticating users: X509 Client certificates,
static tokens per user, bootstrap tokens, service account tokens, and OpenID Connect
Tokens. Thus, Kubernetes can authenticate users using Keycloak. Regarding multi-tenancy,
there are different approaches to isolating tenants (users). The most efficient approach
considering computing resource sharing is to isolate users in their own namespace.
Namespaces are the Kubernetes logical partitions of the cluster. Regarding authorisation,
Kubernetes supports several modes: node grants, Attribute-based access control (ABAC),
Role-based access control (RBAC), and webhook callbacks.

Pods are the minimum unit of scheduling in Kubernetes and they are groups of containers
that are deployed and scheduled together. Kubernetes permits mounting external storage
into the containers by using Volumes. Kubernetes supports different types of Volumes: nfs,
hostPath, azureDisk, cephfs, gcePersistentDisk, awsElastickBlockStore, etc. Container
images can be obtained from several repository images, such as DockerHub , Google10

Container Registry , Harbor , AWS EC2 Container Registry and Azure Container Registry11 12 13

(ACR).14

Regarding the interaction with Kubernetes, there are several ways to do it. On the one hand,
it is possible to connect using CLI tools such as kubectl, through REST API or by using client
libraries for several programming languages. On the other hand, it is possible to interact with
Kubernetes using browser graphical user interfaces (such us Kubernetes Dashboard or15

Kubeapps ) or using desktop graphical user interfaces (such us Octant or Lens ).16 17 18

18 https://k8slens.dev/
17 https://octant.dev/
16 https://kubeapps.com/
15 https://github.com/kubernetes/dashboard
14 https://azure.microsoft.com/en-us/services/container-registry/
13 https://aws.amazon.com/ecr/?nc1=h_ls
12 https://goharbor.io/
11 https://cloud.google.com/container-registry
10 https://hub.docker.com/
9 https://azure.microsoft.com/en-us/product-categories/containers/
8 https://cloud.google.com/kubernetes-engine
7 https://opencontainers.org/
6 https://kubernetes.io/, https://github.com/kubernetes/

23

https://cloud.google.com/kubernetes-engine?hl=es


D3.4 - Final Platform Design

3.2.5. QUIBIM Precision

Quibim Precision will be the front-end (Case Explorer Application) of the Data Lake.19

QUIBIM Precision provides a friendly Web UI with the basic functionalities (insert, update and
query) and more advanced tools like filtering, data mining and a complete DICOM viewer that
provides visualisation and interaction, such as manual segmentation of images or
import/export masks. It manages both the clinical data, as e-forms in OMOP-CDM or
OSIRIS-CDM, and medical images, in DICOM or NIFTI formats.

It provides manual ingestion and automatic anonymisation in both metadata (tags) and image
regions. It also has a REST API interface in the back-end (Data Ingestion/Access Service)
which enables External Applications to ingest data in bulk.

Clinical data is stored in MongoDB, and medical images are stored in a File System,
provided by Ceph.

A service of QUIBIM precision in the back-end has the capabilities of downloading medical
images from a DICOM node (also for bulk ingestion). For this purpose, the project will use
DCM4CHEE (see Section 3.2.9), which acts as temporary storage for connecting from the
Picture Archiving and Communication System (PACS).

Besides, Quibim Precision has a collection of biomarkers and AI Tools (Marketplace) which
can be extended by users and applied to any case in the Data Lake. QUIBIM Precision uses
Nomad and Kubernetes as container orchestrators to launch and manage those analysis
modules through containers.

3.2.6. Apache Guacamole

Apache Guacamole is a clientless remote desktop gateway. It supports standard protocols20

like VNC, RDP, and SSH.

The CHAIMELEON project uses Apache Guacamole to implement the Standalone Access
Point Service for accessing Standalone Applications running on cloud resources of the
repository.

3.2.7. Kubeapps

Kubeapps is an open-source browser UI dashboard for deploying and managing applications
in the Kubernetes cluster using Helm charts files which help define, install, and upgrade even
the most complex Kubernetes applications. Kubeapps provides a catalogue of Helm charts to
the users of multiple public chart repositories. It also allows using private chart repositories
such as Harbor or ChartMuseum . Regarding authentication, it supports the use of OIDC21 22

providers to access both the Kubeapps dashboard and Kubernetes API.

Kubeapps will provide a graphical interface to the users to deploy and visually select and set
values for those parameters defined in the different Helm charts (for example volumes to
mount or daemons to run, like VNC server to connect latter through Guacamole).

22 https://chartmuseum.com/
21 https://goharbor.io/
20 https://guacamole.apache.org/
19 https://quibim.com

24



D3.4 - Final Platform Design

3.2.8. Keycloak

We will use Keycloak to implement the Authentication and Authorisation service. Keycloak23

is an open-source authentication service compatible with the standard protocols OpenID
Connect (an extension to OAuth 2.0) and SAML 2.0, which are the most used nowadays. It
ensures the best compatibility with the actual and future applications of the CHAIMELEON
platform, but also with external Identity Providers (IDPs) like EGI Check-in, eduGain, Google
among many others can be configured easily with Keycloak. This service will centralise the
user management in the CHAIMELEON platform offering a single sign-on to the users and
avoiding the applications needing to store users’ credentials or implement login forms. Once
logged in Keycloak or any of the external IDPs configured, the user will be able to access the
applications without providing the credentials again, even without creating a new password
for that service if (s)he already has an account in the external IDPs. Keycloak provides other
CHAIMELEON applications with all the required details from the users including the groups
and roles (s)he belongs to. Then, applications can allow or deny the user’s access to the
functionality requested, according to the role or group (RBAC).

For storing the users’ data, Keycloak uses a relational database through Java™ Database
Connectivity (JDBC) supporting the most widely used Relational Database Management
Systems (RDBMS) such as Oracle, MySQL, Microsoft SQL Server or PostgreSQL, selecting
the latter for the project.

Keycloak has an Admin Console, which is a complete web UI for managing the users,
groups, roles, external IDPs and all the other configurations of the service, easing that way of
the admin tasks. It also has a registration (sign up) form and an Account Management
Console (Web UI) for the users. The forms, the action flows and automatic mail templates
are customizable, with multi-language support. Any custom attribute can be added to the
forms, storing it in the database and including it as a claim within the token sent to the
applications. Keycloak assigns to every user a UUID (Universally Unique IDentifier) which is
sent in the ‘subfield and can be used by other applications and services like the tracer to
uniquely identify the users in the CHAIMELEON platform.

Password policies can be adjusted, and some security defences like brute force detection
can be enabled and configured too. Finally, the security can be enhanced with Two-Factor
Authentication (2FA) with OTP that is available by default for any user.

This service can be configured to run in cluster mode with a load balancer and multiple
instances which can be scaled up if demand increases.

3.2.9. DCM4CHEE

DCM4CHEE is a collection of open-source applications and utilities for the healthcare24

enterprise. At the core of the DCM4CHEE project is a robust implementation of the DICOM
standard and it is developed in the Java programming language for performance and
portability, supporting deployment on JDK 1.6 and up.

This technology will be employed to implement the Data Ingestion/Access Service through
Web Access to DICOM Object (WADO) service provided by DCM4CHEE.

24 Open Source Clinical Image and Object Management https://www.dcm4che.org/
23 Apache License, Version 2.0. https://www.keycloak.org/. https://github.com/keycloak/keycloak

25

https://www.keycloak.org/
https://github.com/keycloak/keycloak


D3.4 - Final Platform Design

3.2.10. Harbor

Harbor is a multi-tenant and open-source registry and Chart repository that can be configured
to ensure that the images are scanned and free from vulnerabilities, and signed. The
container images are organised in different projects which allows applying resource quotas
and controlling the access to certain images only to authenticated users and based on
predefined roles for accessing projects (limited guests, guests, developers, maintainer and
project admin) and for managing Harbor server. Besides, Harbor supports several ways to
authenticate users: database users, LDAP or OpenID Connect.

3.2.11. Ceph

Ceph is a free-software storage platform that implements object storage on a single25

distributed computer cluster and provides interfaces for object-, block- and file-level storage.
Ceph aims primarily for completely distributed operation without a single point of failure,
scalable to the exabyte level, and freely available.

Ceph replicates data and makes it fault-tolerant, using commodity hardware and requiring no
specific hardware support. As a result of its design, the system is both self-healing and
self-managing, aiming to minimise administration time and other costs.

Ceph stores all data as objects within pools, irrespective of the type of storage (Ceph
Filesystem, Ceph Object Storage, or Ceph Block device). Pools also can divide it into
namespaces. Ceph users must have access to pools to read and write data. Besides, Ceph
users must have to execute permissions to use administrative commands. Ceph uses the
term “capabilities” to describe authorising an authenticated user to restrict access to data
within a pool, a namespace within a pool, or a set of pools based on their application tags.

3.2.12. BlockChain

Fundamentally, a blockchain is a list (chain) of records (called blocks) linked by cryptographic
hashes (Figure 3). Each record should contain, at a minimum, the cryptographic hash of the
previous record (unless it’s the first block), a timestamp, and a data structure. The way the
chaining is done offers protection against the modification of the lists’ records since any
change in a block (except the last one) would invalidate the chain. This protection by hash
chaining is improved by distributing the whole chain to various parties, creating a distributed
blockchain network. If a new record is considered to be added, these parties communicate
with each other to validate the proposed entry (for instance, using a voting mechanism). As a
result, the blockchain network becomes a decentralised database with inherent fault
tolerance and security.

Figure 3. The blockchain’s basic structure.

25 http://ceph.com/

26



D3.4 - Final Platform Design

We use blockchain technology with our Tracer service. It acts as a CR (Create-Read) instead
of CRUD (create, Read, Update and Delete) database, used to trace various user actions,
such as the creation of a new dataset, the use of one or more datasets in a Kubernetes pod,
or the publishing of a new machine learning model. These actions include the fingerprints of
the data targeted by the actions (if any, accessing an existing dataset would not need
fingerprints of data since nothing new is created). For example, if a user creates a new
dataset, the corresponding entry inserted into the blockchain contains the checksum of the
actual imaging data. As a result, the Tracer Component isn’t only a way to record the
platform’s usage history but a way to ensure the actual clinical data (images, patient
information, dataset information) stored on our platform has not been tampered with.
Blockchain technology preserves the authenticity of the data stored within, therefore the
fingerprints of the actual data cannot be modified once added. Due to the requirements of the
GDPR governing the rights of the user on his/her virtual data and information, we intend to
store only data that cannot be used to infer protected information (such as personal user
details: age, gender, occupation, home address etc.), or personal preferences (favourite
colour, favourite pet etc.).

Other services running on our platform that want to register/read a trace into/from the
blockchain don’t access it directly. The Tracer service acts as a proxy responsible for the
communication with the rest of the services (Figure 4). This way, we can ensure seamless
integration of a different blockchain implementation at a later stage, if we deem it necessary
(with or without the migration of the existing blocks), without changing all other services
running on our platform. The use of the blockchain can be considered a data store of traces,
and nothing more.

Figure 4. Tracing operations are not querying the Blockchain directly.

3.2.13. MongoDB

MongoDB is an open-source NoSQL database management system. MongoDB is a tool26

that can manage document-oriented information, store or retrieve information. MongoDB
supports various forms of data. As a NoSQL database, MongoDB shuns the relational

26 GNU AGPL v3.0
https://www.mongodb.com/

27

https://www.google.com/search?sxsrf=ALeKk01umozjcqT5WXRbxNRz3f7bx6Deow:1626341612954&q=GNU&stick=H4sIAAAAAAAAAONgVuLQz9U3MDYxi1_EyuzuFwoASHavBBIAAAA&sa=X&ved=2ahUKEwj_7P3Q4uTxAhWd8uAKHbaHDvwQmxMoATAwegQIKxAD
https://www.google.com/search?sxsrf=ALeKk01umozjcqT5WXRbxNRz3f7bx6Deow:1626341612954&q=AGPL&stick=H4sIAAAAAAAAAONgVuLUz9U3SC82SbNcxMri6B7gAwDYtCy6FAAAAA&sa=X&ved=2ahUKEwj_7P3Q4uTxAhWd8uAKHbaHDvwQmxMoAjAwegQIKxAE


D3.4 - Final Platform Design

database’s table-based structure to adapt JSON-like documents that have dynamic
schemas, which it calls BSON. MongoDB is built for scalability, high availability and
performance from single server deployment to large and complex multi-site infrastructures.

In the context of the CHAIMELEON Project, the database will be employed for Data Lake
data and datasets management.

3.2.14. Git

Git is a free and open-source distributed version control system designed to handle27

everything from small to very large projects with speed and efficiency. It is software for
tracking changes in any set of files.

In the context of the CHAIMELEON Project, the database will be employed for Source Code
Repository.

27 Git  https://git-scm.com/

28



D3.4 - Final Platform Design

4. Use Cases
This section refines the description of Use Cases presented at deliverable “D3.3. Interim
Platform Design” and new ones are identified and described.

Use Cases define the life cycle of all interactions flow among the Users (see Section 2) and
Components (see Section 3) of the repository. Most actions enabled for each User Role
trigger these interaction flows, although other set actions also happen in the middle of the
Use Case execution as interactive processes (user/component) which are required to
conclude the whole life cycle.

The next subsections describe the most important Use Cases from the perspective of the
functionlities (user actions) offered by the repository. For each Use Case, a Unified Modeling
Language (UML) sequence diagram is presented where all interactions among Users and
Components are specified and the User Actions are highlighted in red arrows.

4.1. Authentication & Authorization
In CHAIMELEON Repository, Any User must have a verified User Identity (Proof of Identity)
and a set of User Roles assigned which enables them to execute actions to the repository.
Depending on the assigned Roles, the User will be able to be authenticated and authorised
by the specific Component which is in charge to trigger the whole Use Case associated with
the action.

Regarding the Authentication and Authorisation (AA) processes in the CHAIMELEON
Repository, 6 main use cases (see Figure 2) have been identified and defined.

Figure 5. UML Use Cases identified for Authentication and Authorisation Processes.

4.1.1. User Identity Assignment from IdP

All users in CHAIMELEON Repository require a User Identity (User ID). A User ID is a logical
entity used to authenticate a User on the repository. Today, most people acquire User
Identities through external services named Identity Providers (IdPs). IdP is a service that
creates, maintains, and manages identity information and provides authentication services.

29



D3.4 - Final Platform Design

Thus, in the final design of the repository, User IDs provided by institutional IdPs associated
with EGI Check-In (https://www.egi.eu/services/check-in/) and popular IdPs such as Google
ID and Microsoft Active Directory are accepted. Also, the repository provides its own IdP
(CHAIMELEON IdP), but it is only for Users who are not able to acquire identity from the
aforementioned IdPs.

Figure 6 shows the UML sequence diagram corresponding to the interaction among an IdP
service and Users to implement the acquisition of a User ID.

Figure 6. UML Sequence Diagram for Identity Acquisition of Users.

4.1.2. Proof of Identity

For the registration in the repository, the Users and the relation to their organisation must be
proved through proof of identity. For the sake of liability, CHAIMELEON Repository will not
provide access to generic accounts, only will provide access to users who have a User ID
provided by the accepted IdP (see User Identity Assignment from IdP Use Case) and verified
by an Access Committee composed of members from CHAIMELEON Consortium.

By binding the User ID to proof of identity, we guarantee that an account is linked to a
specific real person and organisation, who must be liable to the actions performed in the
repository. The proof of identity can be:

● Hard and preferred: A digital certificate issued by a trusted CA (e.g. TERENA).

● Soft: A copy of a passport or identity card.

Figure 7 shows the UML sequence diagram corresponding to the interaction flow among
Users and Access Committee to implement the proof of identity process.

30

https://www.egi.eu/services/check-in/


D3.4 - Final Platform Design

Figure 7. UML Sequence Diagram for User Proof of Identity.

4.1.3. User Authentication

Prior to the execution of any action by a User in the repository, the User must first be
authenticated and then authorised to perform the action. The authentication process must be
carried out by the Component, which triggers interaction flow among all repository
Components involved in the action. Basically, in this process a verified User ID (see Proof of
Identity Use Case) provided by an IdP(see User Identity Assignment from IdP Use Case) is
checked to see if s(he) has previously been registered in the repository.

Figure 8 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to implement any User authentication process.

Figure 8. UML Sequence Diagram for the User Authentication Use Case.

31



D3.4 - Final Platform Design

4.1.4. User Authorisation

All Users must first be authenticated and then authorised to perform the action. The
authorization process must be performed by the Component which triggers interaction flow
among all repository components involved in the action and must be carried out depending
on the presented authenticated identity (User ID) and its associated User Roles.

Figure 9 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to implement any User authorisation process.

Figure 9. UML Sequence Diagram for the User Authorisation Use Case.

4.1.5. Role Assignment to Users

This use case describes how Cloud Service and Security Manager assigns roles to an
existing (see User Identity Assignment from IdP Use Case) and verified user (see Proof of
Identity Use Case). Cloud Service and Security Manager based on a list of actions provided
by the user determines the roles to be assigned.

Figure 10 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to implement the role assignment.

Figure 10. UML Sequence Diagram for the Role Assignment to Users.

32



D3.4 - Final Platform Design

4.1.6. User Registration

In the user registration process, users must present their Identity Credentials (see User
Identity Assignment from IdP Use Case) previously verified through a proof of identity (see
Proof of Identity Use Case) by the CHAIMELEON Committee. Then, they accept the Terms
of Usage of the Repository (data usage) and provide the list of actions for which they want to
be enabled.

The user registration must securely keep the successfully verified User IDs and their
associated User Roles in the repository. The User Roles will be employed for enabling the
execution of actions in the repository in the authorisation processes (see User Authorisation
Use Case)

Figure 11 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to implement the registration of a User including the proof of
identity and the assignment of User Roles.

Figure 11. UML Sequence Diagram for the Registration Process to CHAIMELEON Repository.

4.2. Data Lake Management
In the context of the CHAIMELEON Repository, all Patient Cases (medical images and
associated clinical data) required to create Datasets research objects have to be managed
inside the boundaries of the repository. This management is through the Data Lake
component where all these data are ingested, stored and consulted.

Regarding Data Lake management, 4 main use cases (see Figure 12) have been identified.
The Use Cases are described in the next subsections.

33



D3.4 - Final Platform Design

Figure 12. UML Use Cases identified for Data Lake Management.

4.2.1. In-Bulk Data Lake Ingestion

This Use Case defines the required interactions to ingest patient data (medical images and
associated clinical data) into the Data Lake in bulk. All medical data to be ingested into a
Data Lake must have been anonymised and curated in the clinical centre previously to the
ingestion. Therefore, this Use Case takes care of ingesting completed cases.

The first one, User delegates his/her Credentials to an in-bulk ingestion application
(Medexprim Suite™ Component) installed at the medical centre where the real observational
and research data sources are located. In-bulk ingestion applications gather all medical data
from the different involved sources (such as PACS, RIS or other Clinical Data databases).
Only users with the Authorised Technical Data Manager Role can delegate their credentials
to in-bulk ingestion applications. Finally, the Data Ingestion/Access Service inserts all
medical data into the Data Lake.

Figure 13 shows the UML sequence diagram corresponding to the interaction flow among
Users (through in-bulk application with delegated credentials by an Authorised Technical
Data Manager) and Components involved to ingest data in bulk to the Data Lake.

34



D3.4 - Final Platform Design

Figure 13. UML Sequence Diagram for In-Bulk Data ingestion.

4.2.2. Manual Data Lake Ingestion

This Use Case defines the required interactions to ingest Patient Cases into Data Lake
manually. This scenario happens when an Authorised Technical Data Manager user needs to
ingest new data corresponding to an enrichment process of a given dataset (see Enriched
Dataset Creation Use Case) or a Dataset importation process from an external institution
(External Dataset Importation Use Case).

The first step is to authenticate and authorise Users for carrying out the ingestion of the
patient cases. Only users with an authenticated Authorised Technical Data Manager Role will
be authorised by the Case Explorer Application to ingest data to Data Lake manually in the
name of their organisations. In the second step, the Case Explorer Application will get the
medical data from the User and will invoke the Data Ingestion/Access Service, which will
insert this data into the Data Lake.

Figure 14 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to ingest the data into the Data Lake.

35



D3.4 - Final Platform Design

Figure 14. UML Sequence Diagram for Manual Patient Case Data Ingestion.

4.2.3. Data Lake Query

This Use Case defines the required interactions to query patient data from the Data Lake.
This use case happens prior to updating Data lake data (see Update Data Lake Data Use
Case) or the creation of Data Sets (see Dataset Creation Use Case) when a preliminary
selection of cases kept in the Data Lake is required.

The first step is to authenticate and authorise the User. Only users with ClinicalStaff Role,
Dataset Administrator Role or Authorised Technical Data Manager Role will be authorised by
the Case Explorer Application to query patient data to the Data Lake. In the second step,
Case Explorer Application queries and filters data from the Data Lake through the Data
Ingestion/Access Service. Finally, in the third step the service query to Data Lake and
retrieve the results that are returned to the application.

Figure 15 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query data from the Data Lake.

Figure 15. UML Sequence Diagram for Data Lake Query.

36



D3.4 - Final Platform Design

4.2.4. Update Data Lake Data

This Use Case defines the required interactions to update patient data that previously were
ingested into Data Lake (see In-Bulk Data Lake Ingestion Use Case and Manual Data Lake
Ingestion Use Case). Patient data to be updated are DICOM images or e-forms (clinical
data). In the case of updating images, new images are uploaded to Data Lake while
maintaining the old ones. This is to maintain consistency in the available Datasets (see
Dataset Creation Use Case) as they use references to old images. However, in the case of
updating fields of the e-forms, this is directly done at the Data Lake level. This is done
because when Datasets are created, a copy of the involved e-forms is recorded,
guaranteeing consistency. Finally, if data belonging to a Dataset has been involved in an
update process, the Dataset must be marked as "source data updated".

Only users with Authorised Technical Data Manager Role authenticated will be authorised by
the Case Explorer Application to update patient data from Data Lake. Then, the user looks
for the patient cases to be updated/removed (See Data Lake Query Use Case). Next, Case
Explorer Application Updates Data Lake data through the Data Ingestion/Access Service,
which updates accordingly such data in the Data Lake. Finally, the Dataset Service gets the
notification of a change, so it can mark the affected datasets.

Figure 16 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to update Data Lake patient data.

Figure 16. UML Sequence Diagram for Updating Data Lake Data.

4.3. Dataset Management
In the context of the CHAIMELEON Repository, Datasets are research objects managed in
the repository and are composed of a set of data stored in the Data Lake. Datasets are
employed by Data Scientists and External Researchers to develop AI Models. Datasets aim
to give better traceability about what medical data is employed to build a given Model and
enable reproducibility in the development of processing methods and AI Tools.

37



D3.4 - Final Platform Design

Regarding Datasets management, 6 main Use Cases (see Figure 17) have been identified.
The Use Cases are described in the next subsections.

Figure 17. UML Use Cases identified for Dataset Management.

4.3.1. Dataset Creation

This Use Case defines the required interactions to create Datasets. Prior to creating a
Dataset, an Authorised Technical Data Manager uploads the required data to the Data Lake
(see Dataset Creation From Data Lake Use Case, Enriched Dataset Creation Use Case or
External Dataset Importation Use Case).

Dataset Administrator Role is authenticated and authorised by the Case Explorer Application
in this scenario. The Case Explorer Application creates a Dataset using the selected data
through the Dataset Service. The Dataset Service inserts the new Dataset in the Repository
Database and registers the creation process (Metadata of the Dataset) through the Tracer
Service for its traceability. In this process, the Tracer Service will collect some metadata
about the Dataset, including anonymity checks and other data quality metrics that could be
implemented.

Figure 18 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to create Datasets.

38



D3.4 - Final Platform Design

Figure 18. UML Sequence Diagram for Creating Datasets.

4.3.2. Dataset Creation From Data Lake

This Use Case defines the required interactions to create Datasets from patient data stored
in the Data Lake Storage of the repository. In this scenario, data are previously anonymised
and curated in the clinical centre previously to the ingestion in the Data Lake (In-Bulk Data
Lake Ingestion Use Case).

First, a Dataset Administrator Role is authenticated and authorised by the Case Explorer
Application and selects data from Data Lake (see Data Lake Query Use Case) through Case
Explorer Application. Then, s(he) creates the Dataset (Dataset Creation Use Case).

Figure 19 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to create Datasets.

Figure 19. UML Sequence Diagram for Creating Datasets from Data Lake Data.

39



D3.4 - Final Platform Design

4.3.3. Enriched Dataset Creation

This Use Case defines the required interactions to create a new enriched Dataset based on
an existing Dataset of the repository. Data is provided from existing Datasets that have been
enriched with new data (DICOM images or Clinical Data) through a Standalone Application
(e.g. Analytical Engine or Harmonisation Processes).

First, a Data Scientist deploys a Standalone Application (Standalone Application
Deployment USe Case) connected to an existing Dataset. The Standalone Application will
be equipped with tools for enriching data (e.g. harmonisation tools). Then, the Data Scientist
enriches the Dataset and prepares all data for creating a new Dataset. Next, an Authorised
and Technical Data user inserts new data into the Data Lake (see Manual Data Lake
Ingestion Use Case), then a Dataset Administrator creates the Dataset including the new
data (see Dataset Creation Use Case).

Figure 20 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to create enriched Datasets.

Figure 20. UML Sequence Diagram for Creating Enriched Datasets.

4.3.4. External Dataset Importation

This Use Case defines the required interactions to create a Dataset based on existing
Datasets provided by an external institution.

Previous to this Use Case, the User acquires and prepares all data from an external
institution for creating a new Dataset to import the repository. First, the Authorised and
Technical Data Manager manually ingests all data into the Data Lake (see Manual Data
Lake Ingestion Use Case). Next Dataset Administrator creates the Dataset (see Dataset
Creation Use Case)

Figure 21 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to import Datasets.

40



D3.4 - Final Platform Design

Figure 21. UML Sequence Diagram for Importing Datasets.

4.3.5. Dataset Query

This Use Case defines the required interactions to query Datasets from the Repository
Database. This Use Case happens prior to disabling a Dataset (see Dataset Disablement
Use Case) or the deployment of Processing Applications (see Standalone Application
Deployment Use Case) when a preliminary selection of a given Dataset kept in the
Repository Database is required.

The first one is to authorise the User. Only users with an authenticated Dataset Administrator
Role, Data Scientist Role, Application Developer Role or External Researcher Role will be
authorised by the Dataset Explorer Application to query Datasets to the Repository
Database. In the second step, Dataset Explorer Application queries and filters Datasets from
the Repository Database through the Dataset Service. Finally, in the third step, the service
queries the Repository Database and retrieves the results that are returned to the Dataset
Explorer Application.

Figure 22 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query Datasets.

Figure 22. UML Sequence Diagram for Dataset Query.

41



D3.4 - Final Platform Design

4.3.6. Dataset Disablement

This Use Case defines the interactions required to disable a given Dataset from the
Repository Database. Some of the reasons why a Dataset can be disabled are because its
data has been revoked or wrongly created, to name a few.

First, User selects a given Dataset (Dataset Query Use Case). Only users with Dataset
Administrator Role authenticated will be authorised by the Dataset Explorer Application in
this scenario. Then, the Dataset Explorer Application will disable the selected Dataset
through the Dataset Service that will update the Dataset as Disabled. Finally, the Dataset
Service registers the action for its traceability through the Tracer service.

Figure 23 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to disable a given Dataset.

Figure 23. UML Sequence Diagram for Disabling a Dataset.

4.4. Processing Application Management
In the context of the CHAIMELEON Repository, there are two types of Processing
Applications, these are Standalone Applications and Processing or AI Applications.

A Standalone Application is an application from the Application Dashboard catalogue that
runs independently and connects to a Dataset volume, providing Users the means to carry
out exploring and processing existent Datasets of the CHAIMELEON Repository for creating
new AI Models or enriched Datasets. Some examples of this type of application are analytical
engines (provided by BAHIA), harmonisation tools (provided by Imperial College and
QUIBIM), tools for ensuring that the Images harmonised are secure (provided by BGU) and
tools and frameworks for AI developers such as Jupyter server with Tensorflow or Pytorch.

Processing or AI Applications are processing applications or trained AI models embedded as
applications to extract knowledge from medical images and clinical data to fine diagnosis,
prognosis, follow-up of treatments and so on. These types of Processing Applications are
associated with Processing or AI Tools managed by the Marketplace of the CHAIMELEON
Repository.

Regarding Processing Application Management, 3 main Use Cases (Figure 24) have been
defined. The Use Cases are described in the next subsections.

42



D3.4 - Final Platform Design

Figure 24. UML Use Cases Identified for Processing Application Management.

4.4.1. Processing Application Creation

This Use Case defines the required interactions to create and register any type of Processing
Application (Standalone Applications or Processing or AI Applications) in the CHAIMELEON
Repository.

Before creating and registering the Processing Application, the Cloud Service and Security
Management Role is in charge of collecting all the requirements (software, hardware and
configuration) to create the environment for the Processing Application.

Only the Cloud Service and Security Manager role will be authorised to add Processing
Applications to the Application Dashboard, once checking that the components used by the
Processing Application are secure. Then s(he) will register the Processing Application and
store the application container image, required configuration and deployment parameters in
the Application Registry.

Figure 25 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to create and register a Processing Application.

43



D3.4 - Final Platform Design

Figure 25. UML Sequence Diagram for Processing Application Creation.

4.4.2. Processing Application Removal

This Use Case defines the required interactions to remove and unregister any type of
Processing Applications (Standalone Applications or Processing or AI Applications) in the
CHAIMELEON Repository. Only the Cloud Service and Security Manager role will be
authorised to remove Processing Applications to the Application Dashboard.

Figure 26 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to remove and unregister a Processing Application.

Figure 26. UML Sequence Diagram for Processing Application Removal.

4.4.3. Processing Application Query

This Use Case defines the required interactions to query any Processing Applications
(Standalone Applications or Processing or AI Applications) from the Application Registry.
This use case happens prior to creating/removing a Processing Application (Processing
Application Creation Use Case or Processing Application Removal Use Case) or
deploying/releasing Standalone Applications (Standalone Application Deployment Use Case
and Standalone Application Release Use Case). The first one is to authenticate and

44



D3.4 - Final Platform Design

authorise the User. Only users with Data Scientist Role, Application Developers Role,
External Researcher Role or Cloud Services and Security Manager will be authorised by the
Application Dashboard to query Processing Applications to the Application Registry. Next,
Application Dashboard queries and filters applications from the Application Registry. Finally,
it retrieves the results that are returned to the Application Dashboard.

Figure 27 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query Processing Applications.

Figure 27. UML Sequence Diagram for Standalone Application Query.

4.5. Standalone Application Management
This section provides the specific uses cases related to the Standalone Application. 3 main
Use Cases (Figure 28) have been defined. The Use Cases are described in the next
subsections.

45



D3.4 - Final Platform Design

Figure 28. UML Use Cases Identified for Standalone Application Management.

4.5.1. Standalone Application Deployment

This Use Case defines the interactions required to deploy a Standalone Application on the
cloud resources provided by the CHAIMELEON Repository.

Before deploying a Standalone Application (first step), the execution of the Dataset Query
Use Case for selecting a Dataset id must be produced. After that, authenticated users with
the Data Scientist Role, Application Developer Role or External Researcher Role will be
authorised by the Application Dashboard in this scenario. The User selects the application
(see Standalone Application Query Use Case) and deploys it through the Application
Dashboard. The Application Dashboard carries out the deployment through the Orchestrator
Service that downloads the container image from the Application Registry and deploys the
application and attaches a volume to access all data from the Dataset selected by the User.
The information of the Data volume to mount in the Standalone Application is collected from
the Dataset Service and the operation is registered in the Tracer Service for its traceability
annotating the use of a given Dataset by a specific Standalone Application and a given User.

Figure 29 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved in the deployment of a Standalone Application.

Figure 29. UML Sequence Diagram for Standalone Application Deployment.

4.5.2. Standalone Application Release

This Use Case defines the required interactions to destroy a running Standalone Application
(see Standalone Application Deployment Use Case) and release the cloud resources used
by the application.

Authenticated Users with the Data Scientist Role, Application Developer Role and External
Research Role will be authenticated and authorised by the Application Dashboard in this
scenario to destroy a Standalone Application. Applications deployed by a user can only be
destroyed by the same user, except the Cloud Services and Manager Role who are able to
destroy any application. The User selects the application to delete (see Processing
Application Use Case) and destroys it through the Application Dashboard. The Application
Dashboard carries out the release of the resources through the Orchestrator Service. The

46



D3.4 - Final Platform Design

back-end resources will be automatically provisioned and released on demand reacting to
the workload managed by the orchestrator.

Figure 30 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to release cloud resources and destroy Standalone
Applications.

Figure 30. UML Sequence Diagram for Standalone Application Release.

4.5.3. Standalone Application Access Point Query

This Use Case defines the required interactions to get access to a Standalone Application
running on the processing cloud resources provided by the CHAIMELEON Repository. All
these applications must be deployed previously (see Standalone Application Deployment
Use Case).

First, one is to authorise the User. Only authenticated users with the Data Scientist Role,
Application Developer Role and External Researcher Role will be authorised by the
Application Dashboard. The Application Dashboard will list the Standalone Applications
deployed by the user, and then information about each one of them, including the access
point, can be obtained. Internally, the Application Dashboard could query the access point or
additional information to the Orchestrator.

Figure 31. UML Sequence Diagram for listing Standalone Application Access Points.

47



D3.4 - Final Platform Design

Figure 31 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved in the listing of Standalone Application Access Points.

4.5.4. Standalone Application Access

This Use Case defines the interactions required to Access a Standalone Application that is
running on cloud resources provided by the CHAIMELEON Repository.

Before accessing a Standalone Application, the access point and access credentials must be
known (see the Standalone Application Access Point Query Use Case). After that, Users
access their Standalone Applications using the access point and required credentials.

Figure 32 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to access a Standalone Application.

Figure 32. UML Sequence Diagram for accessing Standalone Application.

4.6. Model Management
In the context of the CHAIMELEON Repository, a Model is a research object created by Data
Scientists or External Researchers. A model is an Artificial Intelligence program that has
been trained employing Datasets provided by the repository. For developing the Models, a
Standalone Application running on the repository cloud resources is used. Models can be
published and employed by Applications Developers to build Processing or AI Tools for fine
diagnostics, follow-on disease etc.

Regarding Model Management, 3 main Use Cases (see Figure 33) have been defined. The
Use Cases are described in the next subsections.

48



D3.4 - Final Platform Design

Figure 33. UML Use Cases identified for Model Management.

4.6.1. Publish Model

This Use Case defines the required interactions to publish a Model in the CHAIMELEON
Repository. Such Models will provide Application Developers with trained AI Models which
can be embedded as applications (Processing or AI Applications) in the marketplace (see
Publish Processing or AI Tools Use Case).

Prior to the publication of a Model, a Data Scientist or External Researcher deploys a
Standalone Application (Standalone Application Deployment USe Case) which has access
to a set of Datasets of the repository and provides all required AI frameworks (e.g.
TensorFlow) to train the AI Models. Then, the user creates the model and prepares all data
for its publication. The Model is published in the Source Code Repository by authenticated
and authorised users (Only users with Data Scientist Role or External Researchers),
providing the information about the Model (e.g. employed Datasets, authors etc...). The
operation of publishing a model by a given user is registered by the Tracer Service for its
traceability.

Figure 34 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved in the publishing of a Model.

Figure 34. UML Sequence Diagram for Publishing a Model.

49



D3.4 - Final Platform Design

4.6.2. Unpublish Model

This Use Case defines the required interactions to unpublish a Model in the CHAIMELEON
Repository.

Models will be unpublished to the Source Code Repository by authenticated and authorised
users (Only users with Data Scientist Roles or External Researchers). First, the user chooses
a Model (see Model Query Use Case). Next, the Model is unpublished from the Source
Code Repository.

Figure 35 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved in the publishing of a Model.

Figure 35. UML Sequence Diagram for Unpublishing a Model.

4.6.3. Model Query

This Use Case defines the required interactions to query Models stored and published at the
Source Code Repository.

The first one is to authorise the User. Only users with an authenticated Data Scientist Role,
Application Developer Role or External Researcher Role will be authorised by the Source
Code Repository to query Models.

Figure 36 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query Models.

50



D3.4 - Final Platform Design

Figure 36. UML Sequence Diagram for Consulting Models.

4.7. Marketplace Management
Marketplace provides to users a set of Processing or AI Tools based on existing Models
developed by Data Scientists. In the context of CHAIMELEON Repository, the Processing or
AI Tools will be created by Application Developers using existing models Datasets created by
the Data Scientists.

Regarding Marketplace Management, 4 main Use Cases (Figure 37) have been defined. The
Use Cases are described in the next subsections.

Figure 37. UML Use Cases identified for Marketplace Management.

4.7.1. Publish Processing or AI Tools

This Use Case defines the required interactions to develop and publish Processing or AI
Tools in the CHAIMELEON Repository. Such Tools will provide Users with the means to
extract knowledge to assist in research, diagnosis, prognosis and treatment follow-on. In the

51



D3.4 - Final Platform Design

context of the project, these Tools could be processing tools or trained AI models embedded
as applications (Processing or AI Applications).

Tools will be integrated through a Marketplace by authenticated and authorised users (Only
users with Application Developer Role), providing the information about the execution
arguments and providing a user-friendly interface to end-users for its execution. The
computational processes of these Tools will be executed through new Processing or AI
Applications which will require the Cloud Services and Security Manager intervention to the
creation of their specifications (image containers and recipes) and register them in the
Application Registry of the repository (Processing Application Creation Use Case).

Figure 38 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved in the publishing of Processing or AI tools.

Figure 38. UML Sequence Diagram for publishing Processing or AI tools.

4.7.2. Unpublish Processing or AI Tools

This Use Case defines the required interactions to unpublish a Processing or AI Tools from
Marketplace.

Authenticated Users with the Application Developer Role will be authenticated and
authorised by the Marketplace in this scenario to unpublish a Tool. Tools deployed by a user
can only be unpublished by the same user, except the Cloud Services and Manager Role,
who are able to unpublish any tool. The User selects the tool to unpublish (see Processing or
AI Tool Query Use Case) and unpublish it through the Marketplace. Then, the associated
Processing or AI Application is maintained in the Application registry for its traceability.

Figure 39 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved in the unpublishing of Processing or AI tools.

52



D3.4 - Final Platform Design

Figure 39. UML Sequence Diagram for publishing Processing and AI Tools.

4.7.3. Processing or AI Tool Query

This Use Case defines the required interactions to query Processing and AI Tools published
in the Marketplace. This use case happens prior to using a tool (see Apply Processing and AI
Tools Use Case). The first one is to authenticate and authorise the User. Only users with the
Data Scientist Role, Clinical Staff Role, External Researcher Role or Cloud Services and
Security Manager Roles will be authorised by the Marketplace to query the published tools.
In the second step, the Marketplace queries and filters the tools.

Figure 40shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to list Processing and AI Tools.

Figure 40. UML Sequence Diagram for the processing or AI Tool Query.

53



D3.4 - Final Platform Design

4.7.4. Apply Processing or AI Tool

This Use Case defines the required interactions to use the Processing and AI tools provided
by the Marketplace of the CHAIMELEON Repository to assist on research, diagnosis,
prognosis and treatment follow-on.

The first one is to authenticate and authorise the User. Only users with External researcher
Role, Application Developer Role, Data Scientist Role or Clinical Staff Roles will be
authorised by the Marketplace to use the tools previously published (Publish Processing and
AI Tools use case). Then, the User through Marketplace queries and filters Tools (see
Processing and AI Tool Query use Case) and selects one (e.g. the computation of the
angiogenesis for evaluating the aggressiveness of a tumour). Next, the User selects its own
or an existing case to analyse and after that, the Marketplace runs the associated process
(Processing or AI Application) through the Orchestrator Service. This may require fetching
the application image and the additional files required from the Application Registry and then
running the associated Processing or AI Application. Finally, the Marketplace collects the
results from the Processing or AI Application and shows them to the User through the
Marketplace. When the process finishes and results are displayed by the Marketplace, the
Orchestrator Service releases cloud resources of the associated Processing or AI
Application.

Figure 41 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to run Processing / AI Tools.

Figure 41. UML Sequence Diagram for Applying processing or AI Tool.

4.8. Tracing Data
This Use Case defines the required interactions to provide a traceability service to register
and inspect the operations performed on a specific Dataset and Models. The objective of
traceability is twofold. On the one hand, data providers can query the service to retrieve the
users who have accessed the Dataset and the models trained on it. On the other hand, users

54



D3.4 - Final Platform Design

can use the tracking information on a public blockchain to verify that the model or data they
are using is the one used in the registration of an object.

4 main Use Cases (Figure 42) have been defined. The Use Cases are described in the next
subsections.

Figure 42. UML Use Cases identified for Tracing Data Management.

4.8.1. Dataset History Query

The Dataset history is the full set of operations performed on a given Dataset, such as the
creation, the access and the models created using such a Dataset. This Use Case will be
available only to the Data Protection Officer (DPO) who would like to monitor the access
history of a given Dataset.

The first one is to authenticate and authorise the User. Only users with Data Protection
Officer Roles will be authorised by the Tracer. Then, the User chooses a given Dataset (see
Dataset Query Use Case) to consult the history through Tracer Service.

Figure 43 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query the Dataset history.

55



D3.4 - Final Platform Design

Figure 43. UML Sequence Diagram for Dataset History Query.

4.8.2. Query Users who accessed a Dataset

The Tracer service registers access to a Dataset performed in the frame of the
CHAIMELEON repository. Datasets are made available to users as volumes mounted on
virtual infrastructures (Standalone Applications), so access to the Datasets is duly registered
on the tracing system. The Data Protection Officer (DPO) could retrieve the details of the
users who have mounted and therefore had the right to access a given Dataset.

The first one is to authenticate and authorise the User. Only users with Data Protection
Officer Roles will be authorised by the Tracer Service. Then, the User chooses a given
Dataset (see Dataset Query Use Case) to consult the users who have accessed the Dataset
through Standalone Applications.

Figure 44 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query the users who have accessed a given Dataset.

Figure 44. UML Sequence Diagram for Consulting Dataset Users Query.

4.8.3. Query Datasets Used on a Specific Model

Key information for selecting the rightmost model could be the accuracy or the sensitivity.
However, this information may be biased depending on the Dataset used for the training.
During the registration of a model, the developer has included information about the Datasets

56



D3.4 - Final Platform Design

used in training, so a user of the model can retrieve the aggregated information of the
Dataset and make more informed opinions.

The first one is to authenticate and authorise the User. Any CHAIMELEON user will be
authorised by the Tracer Service. Then, the User chooses a given model (see Model Query
Use Case) employed in a given Processing or AI Tool to consult the Datasets employed for
its development.

Figure 45 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query the Datasets used to develop a specific Model.

Figure 45. UML Sequence Diagram for consulting  Dataset Used on a Specific Model.

4.8.4. Fingerprint Research Object Query

Research objects such as Datasets and Models have a PID assigned. This resolvable PID is
linked to an info page in which aggregated information is presented, such as the author,
provider, and a summary including some aggregated data (such as the number of cases,
gender balance, modalities and other related information according to the MIABIS format in
the case of datasets). Along with this information, Datasets and Models have a fingerprint
computed from the information of images, clinical data or model parameters. This information
provides a unique checksum that could be computed by the user, so the veracity of the data
available (Model or Dataset) can be attested.

The first one is to authenticate and authorise the User. Only users with Data Scientists and
Application Developers will be authorised by the Tracer Service. Then, the User chooses a
given research object (Dataset or Model) (see Dataset Query Use Case or see Model Query
Use Case) to consult its fingerprint.

Figure 46 shows the UML sequence diagram corresponding to the interaction flow among
Users and Components involved to query the Datasets used to develop a specific model.

57



D3.4 - Final Platform Design

Figure 46. UML Sequence Diagram for consulting Fingerprints.

58



D3.4 - Final Platform Design

5. Requirements
After the analysis of the user roles (see section 2), components (see section 3), and use
cases (see section 4) we proceed to identify, list, describe and prioritise the requirements to
the final repository design. Starting from the information of Deliverable 3.2, which outlines
non-functional requirements, this deliverable compiles and formally describes those
requirements (non-functional requirements) and standards for the design of the
CHAIMELEON Repository. Additionally, it includes those requirements coming from the
analysis of the User Role Actions (functional-requirements) and Use Cases.

The requirement elicitation follows the IEEE-830 standard, in which requirements are
prioritised according to the following categories: Mandatory (requirements that must be
considered); Recommendable (requirements that will provide relevant features to the
platform); Optional (requirements that will be nice to have but can be postponed).

The requirements are described according to the following structure:

● Code: RE#.#, where the first number relates to the category of the requirement (TRA
- Transversal, UDB - User Database, DLK - Data Lake, RDS - Repository Database
(Datasets), APR - Application Registry, SCD - Source Code Repository, BCH -
Blockchain Repository, AUS - Authentication Service, IAS - Data Ingestion/Access
Service, DSS - Dataset Service, TRS - Tracer Service, SAPS- Standalone Access
Point Service, ORC - Orchestrator Service, URA - User Registration Application, CEA
- Case Explorer Application, MKT - Marketplace, DSE - Dataset Explorer Application,
APP - Application Dashboard and the second identifies the number of the
requirement in such a group.

● Name: Short title of the requirement.
● Description: Concise but comprehensive description of the requirement.
● Type: Functional or Non-Functional.
● Relevance: Mandatory / Recommendable / Desirable.

5.1. Transversal Requirements
Next requirements are applied or involved to a set of CHAIMELEON Components; these are
Storages, Services, Platform Applications and Processing Applications.

Code: RETRA.1 Name: Cloud Resources Management

Type: Non-Functional Relevance: Mandatory Technology: Openstack

Description:
CHAIMELEON Components run on top of cloud resources. The management of the
back-end resources must be performed through a cloud manager.

59



D3.4 - Final Platform Design

Code: RETRA.2 Name: Isolated Cloud Resources Management

Type: Functional Relevance: Mandatory Technology: Openstack

Description:
The CHAIMELEON Components must run on an isolated environment using dedicated
cloud resources, which could run on a pool of shared computing resources.

Code: RETRA.3 Name: Flexible and Elastic Management of Cloud Resources

Type: Functional Relevance:
Recommendable

Technology: EC3

Description:
CHAIMELEON Components should serve all requests, scaling up storage and processing
cloud resources based on the demand and scaling down the processing resources if the
demand decreases.

Code: RETRA.4 Name: Deploy Storages, Services, Platform Applications and
Processing Applications on the Cloud

Type: Functional Relevance: Mandatory Technology: TOSCA, IM

Description:
CHAIMELEON Components must be described following the Infrastructure as Code (IaC)
paradigm to be automatically deployed on an on-premise or a public cloud.

Code: RETRA.5 Name: Storages, Services, Platform Applications and Processing
Applications connected through a Private Network

Type: Non-Functional Relevance: Mandatory Technology: K8s

Description:
All CHAIMELEON Components must be linked through an isolated private network.
Components that require external access will also have a public end.

Code: RETRA.6 Name: Interactions between Users/Storages

Type: Functional Relevance: Mandatory Technology: --

Description:
Users must not be able to access the Data Lake directly, Repository Database,
Application Registry and Tracer Blockchain but will use the applications and services
instead.

60



D3.4 - Final Platform Design

Code: RETRA.7 Name: User access to the repository

Type: Functional Relevance: Mandatory Technology: SSL, HTTPs, SFTP,
DICOMWeb (WADO-RS)

Description:
The functionalities of the CHAIMELEON Repository are mainly provided to Users through
Platform Applications. Thus, Platform Applications must expose an interface to Users.

Code: RETRA.8 Name: User access to ingestion service

Type: Functional Relevance: Mandatory Technology: SSL, HTTPs, SFTP,
DICOMWeb (WADO-RS)

Description:
Direct interaction between Users with any Services will not be provided except between
authorised Technical Data Managers and the Data ingestion/access Service to carry out
the data ingestion in bulk using external tools with delegated credentials.

Code: RETRA.9 Name: Interactions between Users/Processing Applications

Type: Functional Relevance: Mandatory Technology: SSH, Guacamole

Description:
All Processing Applications must provide a user interface to the Users through consoles or
a remote desktop.

Code: RETRA.10 Name: User authorisation Processes Implemented at Platform
Application Level and Data ingestion/Access Service

Type: Non-Functional Relevance: Mandatory Technology: Keycloak, OpenID

Description:
As the Platform Applications and Ingestion/Access Service are the unique access points
for the Users to perform the functionalities offered by the CHAIEMELON Repository, they
must provide authentication and authorisation mechanisms for Users.

61



D3.4 - Final Platform Design

Code: RETRA.11 Name: Encrypted communications for direct interactions between
Users and CHAIMELON Components

Type: Non-Functional Relevance: Mandatory Technology: SSL, HTTPs, SFTP,
DICOMWeb (WADO-RS) and
Apache Guacamole.

Description:
CHAIMELON Components must guarantee confidentiality and integrity of communications
through secure channels using encrypted communications protocols when dealing with
Applications accessible by users (web interfaces, command line interfaces, remote
desktop, REST API).

Code: RETRA.12 Name: Encrypted communications for internal interaction among
CHAIMELON Components

Type: Non-Functional Relevance: Desirable Technology: SSL, HTTPs and
SFTP.

Description:
All CHAIMELEON Components may support secure channels through encrypted
communications on the CHAIMELEON Private Network for direct communications among
them, in case that the applications or services request it.

Code: RETRA.13 Name: Capability to Resize Storage Backend Capacity

Type: Functional Relevance: Mandatory Technology: Ceph, K8s

Description:
Backend resources supporting the Storages must be able to scale up providing additional
capacity.

5.2. User Database

Code: REUDB.1 Name: Storage of User Identities and Associated Metadata

Type: Non-Functional Relevance: Mandatory Technology: Keycloak

Description:
This Storage must store all User Identities and his/her associated metadata (groups, roles
and capabilities).

62



D3.4 - Final Platform Design

Code: REUDB.2 Name: API/REST interface to offer the required functionalities to
manage User Data

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This storage must provide an API/REST interface to the User data management
application (including adding user identity, assigning or removing groups/roles/capabilities,
decommissioning a user, etc.).

Code: REUDB.3 Name: Access to Storage only from the User Registration Application.

Type: Functional Relevance: Mandatory

Description:
The User Registration Application must be the only CHAIMELEON Component able to
access the User Database Storage (via API/REST interface). Direct access from any other
CHAIMELEON Component will not be allowed.

5.3. Data Lake Storage

Code: REDLK.1 Name: It Stores Medical Images and Associated Clinical Data

Type: Non-Functional Relevance: Mandatory Technology: Keycloak

Description:
This Storage must store Clinical Data and associated Medical Images from the medical
centres in the four areas involved in the project (breast, prostate, lung and colorectal).

Code: REDLK.2 Name: Anonymised and Curated Data

Type: Non-functional Relevance: Mandatory Technology: --

Description:
This Storage must store fully anonymised and curated data (clinical data and images). The
repository must not include any personal information, and Users will commit to preventing
from running and reidentification process on the data.

Code: REDLK.3 Name: DICOM Standard Format for Storing Medical Images

Type: Non-Functional Relevance: Mandatory Technology: DICOM Standard

Description:
It must store medical imaging data as files in DICOM format and compliant to the Common
Data Model (CDM) defined in the project.

63



D3.4 - Final Platform Design

Code: REDLK.4 Name: NIFTI Standard Format for Storing Medical Images

Type: Non-Functional Relevance:
Recommendable

Technology: NIFTI

Description:
It should store medical imaging data in files following other formats than DICOM such as
NIFTI.

Code: REDLK.5 Name: OMOP-CDM for Storing Observational Real-World Studies
(Clinical Data)

Type: Non-Functional Relevance:
Recommendable

Technology: OMOP-CDM

Description:
This Storage must keep the clinical data following the Observational Medical Outcomes
Partnership Common Data Model (OMOP-CDM) for observational, real-world studies.

Code: REDLK.6 Name: OSIRIS-CDM for Storing Research Data (Omic and
Biomarker Data)

Type: Non-Functional Relevance: Desirable Technology: OSIRIS-CDM

Description:
This Storage may consider other types of research data (in particular -omics and
biomarker data) to complement the OMOP-CDM following the OSIRIS-CDM.

Code: REDLK.7 Name: MIABIS-CDM for fusion with External Biobanks

Type: Non-Functional Relevance: Desirable Technology: MIABIS-CDM

Description:

This Storage may consider the MIABIS data model to allow the fusion with traditional
biobanks and guarantee the sustainability of recollected data.

Code: REDLK.8 Name: API/REST interface to offer basic functionalities for
managing Clinical Data and Medical Images

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This Storage must provide an API/REST interface for the management (at least insert,
update, select and delete) of Clinical Data and Medical images.

64



D3.4 - Final Platform Design

Code: REDLK.9 Name: Access Restricted to the Data Ingestion/Access Service

Type: Non-Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
The Data Ingestion/Access Service must be the only CHAIMELEON Component able to
access the Data Lake Storage (via an API/REST interface). Direct access from any other
CHAIMELEON Component is not allowed.

Code: REDLK.10 Name: POSIX File System for Management of Medical Images

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision
(File System), POSIX, Ceph.

Description:
This Storage must make Medical images files accessible using standard POSIX calls.

5.4. Repository Database

Code: RERDS.1 Name: Store Datasets as Isolated Volumes

Type: Non-Functional Relevance: Mandatory Technology: Keycloak

Description:
This Storage must create Datasets as data volumes that can be mounted in a
CHAIMELEON Processing Application. A data volume will be a folder with symbolic links to
medical images files (DICOM or other supported formats such as NIFTI) hosted in the Data
Lake Storage. The research data (OSIRIS-CDM) and clinical data (OMOP-CDM) will be a
copy of the e-forms files related.

Code: RERDS.2 Name: Data Volume POSIX Access by Processing Applications

Type: Functional Relevance: Mandatory Technology: CEPH, POSIX,
JSON (e-forms)

Description:
The data volumes (Datasets) created in this storage must be mountable as a folder in a
POSIX file system, with symbolic links to medical images files (DICOM or other supported
formats such as NIFTI) hosted at the Data Lake Storage.

65



D3.4 - Final Platform Design

Code: RERDS.3 Name: Access to Medical Images of the Volumes through DICOM
Web protocol

Type: Non-Functional Relevance: Mandatory Technology: DCM4CHEE

Description:
The images of the Volumes stored in this storage must be accessible by CHAIMELEON
Processing Application through a PACS System compatible with the DICOM web protocol.

Code: RERDS.4 Name: Access Restricted to the Dataset Service

Type: Non-Functional Relevance: Mandatory Technology: --

Description:
The Dataset Service must be the only CHAIMELEON Component able to access the
Repository Database Storage (via API/REST interface). Direct access from any other
CHAIMELEON Components is not allowed.

5.5. Application Registry

Code: REAPR.1 Name: Storage of Processing Applications as Containers

Type: Non-Functional Relevance: Mandatory Technology: Harbor Registry,
Docker, Helm Charts, YAML

Description:
The Application Registry must store Processing Applications (Standalone Applications and
Processing/AI tools) as containers, including all the files required for their deployment and
set-up, such as Helm Charts, YAML files.

Code: REAPR.2 Name: API/REST interface to manage Processing Applications as
Containers

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This Storage must provide an API/REST interface for managing the uploading,
downloading, updating and querying information about the containers of the applications
and all the associated files.

66



D3.4 - Final Platform Design

Code: REAPR.3 Name: Access Restricted to the Dashboard Application, Case
Explorer (Marketplace) and the Orchestrator Service

Type: Non-Functional Relevance: Mandatory Technology: --

Description:
The Application Registry must only be accessible by the Dashboard Application, the Case
Explorer and the Orchestrator Service (via API/REST).

5.6. Source Code Repository

Code: RESCD.1 Name: Storage of Source Code

Type: Non-Functional Relevance: Mandatory Technology: Git Repository

Description:
This Storage must store the Source Code created by the developers (e.g. Processing and
AI tools, Standalone Applications, Services) in the context of the CHAIMELEON project.

Code: RESCD.2 Name: CLIs and Web interface to offers basic functionalities to
manage Source Codes

Type: Functional Relevance: Mandatory Technology: Git Repository

Description:
This Storage must provide Command-Line and web interfaces for managing the source
code repository (at least pull, push, checkout and commit)

Code: RESCD.3 Name: Access Restricted to Application Developers

Type: Non-Functional Relevance: Mandatory Technology: Git Repository

Description:
Developers of the CHAIMELEON project must be able to access the Source code
Repository.

67



D3.4 - Final Platform Design

5.7. Tracer Blockchain

Code: REBCH.1 Name: Storage of Data for Traceability of Datasets and Tools.

Type: Non-Functional Relevance: Mandatory Technology: MongoDB

Description:
This Storage must store all data required to trace the access to data (through the
mounting and release of a data volume from a Dataset) and the usage of Processing
Applications (which processing application has used which dataset and under which user),
as well as in the development of processing tools (which dataset have been used for
creating which processing tool).

Code: REBCH.2 Name: API/REST interface offering a basic functionality to manage
traceability data.

Type: Functional Relevance: Mandatory Technology: MongoDB

Description:
This Storage must provide an API/REST interface for the secure management of
traceability data traceability. The operations supported should preserve the integrity and
have transactional behaviour.

Code: REBCH.3 Name: Restricted access to the Tracer Service only

Type: Non-Functional Relevance: Mandatory Technology: --

Description:
Tracer Service must be the only CHAIMELEON Component allowed to access via
API/REST interface the Tracer Blockchain Storage.

Code: REBCH.4 Name: Restricted access to Blockchain

Type: Non-Functional Relevance: Mandatory Technology: --

Description:
The Tracer Service must not be of public access.

Code: REBCH.5 Name: Blockchain does not store sensitive information

Type: Non-Functional Relevance: Mandatory Technology: --

Description:
The Tracer Service must store only pseudonymised or anonymised data identifiers, for
access tracking purposes.

68



D3.4 - Final Platform Design

5.8. Authentication & Authorisation Service

Code: REAUS.1 Name: Restrict access to the Authentication &Authorisation
Service to the Platform Applications and Data Ingestion/Access
Services only

Type: Non-Functional Relevance: Mandatory Technology: Keycloak

Description:
Platform Applications and Data Ingestion/Access Service must be the only CHAIMELEON
Components able to access this Service.

Code: REAUS.2 Name: User Authentication and authorisation compatible with
OpenID Connect (OAuth 2.0)

Type: Non-Functional Relevance: Mandatory Technology: Keycloak

Description:
This Service must be compatible with OpenID Connect (OAuth 2.0) standard, enabling all
Platform Applications and Data Ingestion/Access Service to identify and authenticate the
users. This standard also provides basic profile information where roles and groups as
“claims” can be added to authorise or deny the User access.

Code: REAUS.3 Name: User Authentication and authorization compatible with
SAML 2.0

Type: Non-Functional Relevance:
Recommendable

Technology: Keycloak

Description:
This Service should be compatible with SAML 2.0 standard to provide the possibility for
communicating with external Identity Providers such as EduGain.

Code: REAUS.4 Name: User Authentication Management

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This Service must provide the basic functionalities for managing Users’ identities such as
sign up, list, get information and disable. If a User provides an identity from an external IDP
(such as Google or EduGain), proof of identity will be requested to process the request.

69



D3.4 - Final Platform Design

Code: REAUS.5 Name: User authorization Management

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This Service must provide the basic functionalities for managing groups and Users’ roles
or capabilities (such as creation, disabling, query, role assignment and release, group
membership).

Code: REAUS.6 Name: API/REST Interface for Offering the Basic Authentication
and authorization Functionalities

Type: Non-Functional Relevance: Mandatory Technology: Keycloak

Description:
This Service must offer an API/REST interface to provide Platform Applications and Data
Ingestion/Access Service with the basic functionalities for user authentication and
authorization management.

5.9. Data Ingestion/Access Service

Code: REIAS.1 Name: Restrict access to Data Ingestion/Access Service to Case
Explorer Application and External applications with delegated
credentials only

Type: Non-Functional Relevance: Mandatory Technology: QUIBIM Precision
Web Interface, MEDEX Suite

Description:
CHAIMELEON Case Explorer Application and External Applications (to ingest data in bulk)
must be able to access this service for managing Data Lake Storage and execute the
offered functionalities (data ingestion, selection etc…). The external applications for in-bulk
data ingestion must have delegated credentials of an Authorised Technical Data Manager.
Direct access from any other CHAIMELEON Component is not allowed.

Code: REIAS.2 Name: Basic Functionalities to Manage the Data present in the
Data Lake

Type: Functional Relevance: Mandatory Technology: --

Description:
This Service must provide basic functionalities, such as insert, select, retrieve, update,
disable to manage the Data Lake data (both clinical data as JSON e-forms in OMOP-CDM
or OSIRIS-CDM and medical images as DICOM or NIFTI files) stored in the Data Lake
Storage.

70



D3.4 - Final Platform Design

Code: REIAS.3 Name: API/REST Interface for Managing the Data Lake Data

Type: Non-Functional Relevance: Mandatory Technology: API/Rest, DICOM
Web

Description:
This Service must offer a REST/API interface (and DICOM Web protocol for medical
images) to the Case Explorer Application and External Applications used to ingest data in
bulk.

5.10. Dataset Service

Code: REDSS.1 Name: Restricted access to the Dataset Service from Data
Ingestion/Access Service, Orchestrator Service, Case Explorer
Application and Dataset Explorer Application only.

Type: Non-Functional Relevance: Mandatory Technology: --

Description:
Only Data Ingestion/Access Service, Orchestrator Service, Case Explorer Application and
Dataset Explorer Application must be able to access this service. Direct access from any
other CHAIMELEON Component is forbidden.

Code: REDSS.2 Name: Basic Functionalities to Manage Dataset Data

Type: Functional Relevance: Mandatory Technology: --

Description:
This Service must provide basic functionalities for managing Datasets (create, consult,
etc.) stored in the Repository Database.

Code: REDSS.3 Name: API / REST Interface for Offering Dataset data
Management

Type: Non-Functional Relevance: Mandatory Technology: API/REST

Description:
This Service must expose a REST / API interface.

71



D3.4 - Final Platform Design

5.11. Tracer Service

Code: RETRS.1 Name: Restricted access to the Tracer Service from Dataset
Service only

Type: Non-Functional Relevance: Mandatory Technology: --

Description:
The Tracer Service must be (in principle) only accessible through the Dataset Service.

Code: RETRS.2 Name: Provide a Basic Functionality to Manage the Traceability

Type: Functional Relevance: Mandatory Technology: --

Description:
This Service must provide basic functionalities for the management of data traceability,
registering at least the events of dataset creation, dataset access through a volume,
dataset release, application registration, application release, application access, IA models
access. This data is stored in the Tracer Blockchain.

Code: RETRS.3 Name: API/REST Interface for Traceability management

Type: Non-Functional Relevance: Mandatory Technology: API/REST

Description:
This Service must offer a REST/API interface to Dataset Service.

5.12. Orchestrator Service

Code: REORC.1 Name: Restricted access to Orchestrator Service from Application
Dashboard and Case Explorer (Marketplace) only

Type: Non-Functional Relevance: Mandatory Technology: Kubeapp, QUIBIM
Precision

Description:
This Service must be accessible only by the Application Dashboard and Case Explorer.

72



D3.4 - Final Platform Design

Code: REORC.2 Name: Basic Functionalities to Manage the Applications

Type: Functional Relevance: Mandatory Technology: Kubernetes

Description:
This service must provide the basic functionality for the management of Processing
Applications, including deployment, listing, inspecting, reconfiguring and deleting.
Applications will be stored in the Application Registry.

Code: REORC.3 Name: API / REST Interface for Offering Application Management

Type: Non-Functional Relevance: Mandatory Technology: Kubernetes

Description:
This Service must offer a REST/API interface to the Application Dashboard.

5.13. Standalone Access Point Service

Code: SAPS.1 Name: User-Friendly Web Interface

Type: Functional Relevance: Mandatory Technology: Apache Guacamole

Description:
This application must offer a User-Friendly web interface to manage access points to
standalone Applications through SSH or RDP connections.

Code: SAPS.2 Name: Functionalities for Standalone Applications access points

Type: Functional Relevance: Mandatory Technology: Apache Guacamole

Description:
This application must offer a set of functionalities to manage access points to Standalone
Applications. These functionalities must only be enabled to the Data Scientist Role,
Application Developer Role, External Researcher Role and Clinical Staff Role.

5.14. User Registration Application

Code: REURA.1 Name: User-Friendly Web Interface

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This application must offer a set of functionalities to manage User Identities and
associated Metadata through a user-friendly and usable interface.

73



D3.4 - Final Platform Design

Code: REURA.2 Name: Users’ Sign-up

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This application must allow users to sign up requesting a specific role. The application will
implement identity assignment, user registration and the uploading of the proof of identity
and the registration of groups and capabilities.

Code: REURA.3 Name: Access from Cloud Services and Security Manager Role
to the registration management

Type: Functional Relevance: Mandatory Technology: Keycloak

Description:
This application must provide the Cloud Services and Security Manager Role an interface
to manage the registration (including the validation of the identity and the assignment of
groups and capabilities) of any User Role in the CHAIMELEON Repository.

5.15. Case Explorer Application

Code: RECEA.1 Name: User-Friendly Web Interface

Type: Functional Relevance: Mandatory Technology: QUBIM Precision

Description:
This application must offer a User-Friendly web interface to manage Data Lake Data,
Datasets and Marketplace depending on the User Role.

Code: RECEA.2 Name: Functionalities for manual ingestion into the Data Lake

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision
(DCM4CHEE Node),

Description:
This application must offer a set of functionalities to manage Data ingestion into the Data
Lake, offering a web interface to introduce for each case the clinical data (e-form compliant
to OMOP-CDM / OSIRIS-CDM) and upload medical images associated (e.g. DICOM
images). These functionalities must only be enabled to the Authorised Technical Data
Manager Role.

74



D3.4 - Final Platform Design

Code: RECEA.3 Functionalities for Filtering Data Lake Data

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
This application must offer a set of functionalities to select Data from the Data Lake,
offering a web interface to select the cases that comprise a Dataset (including clinical data
and associated medical images). These functionalities must only be enabled to the
Authorised Technical Data Manager Role and Dataset Manager Role.

Code: RECEA.4 Name: Functionalities for Updating Data Lake Data

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision
(DCM4CHEE Node)

Description:
This application must offer a set of functionalities to manage the update of Data Lake
Data, through a web interface. These functionalities must only be available to the
Authorised Technical Data Manager Role.

Code: RECEA.5 Name: Functionalities for Creating Datasets

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
This application must offer a set of functionalities to create Datasets using the Data Lake
Data. These functionalities must only be enabled to the Dataset Manager Role and will
include the request of the dataset creation to the Dataset Management Service providing
the list of cases and the associated metadata.

5.16. Marketplace

Code: REMKT.1 Name: User Friendly and Usable Web Interface

Type: Functional Relevance: Mandatory Technology: QUBIM Precision

Description:
This application must expose the management of Processing and AI Tools through a
User-Friendly web interface.

75



D3.4 - Final Platform Design

Code: REMKT.2 Functionalities for Publishing Processing and AI Tools

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
This application must offer a set of functionalities to publish Processing and AI Tools,
offering a web interface to upload the developed tool and validate it. These functionalities
must only be accessible to the Application Developed Role who could upload tools to the
marketplace and Cloud Services and Security Manager Role to validate the tools for
publishing.

Code: REMKT.3 Functionalities for Filtering Processing and AI Tools

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
This application must offer a set of functionalities to select Processing and AI Tools
published in the marketplace, offering a web interface to filter tools. These functionalities
must only be enabled to the Clinical staff Role and Data Scientist Role.

Code: REMKT.4 Functionalities for Executing Processing and AI Tools

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
This application must offer a set of functionalities to execute Processing and AI Tools
published in the marketplace. These functionalities must only be enabled to the Clinical
staff Role and Data Scientist Role.

5.17. Dataset Explorer Application

Code: REDSE.1 Name: User-Friendly Web Interface

Type: Functional Relevance: Mandatory Technology: QUBIM Precision

Description:
This application must provide a User-Friendly web interface to manage Datasets.

76



D3.4 - Final Platform Design

Code: REDSE.2 Select and query Datasets

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
This application must offer a set of functionalities to select Datasets from the Repository
Database, offering a web interface to filter them and to obtain information from a specific
one. These functionalities must be available only to Dataset Administrator Role, Data
Scientist Role, Application Developer Role and External Researcher Role.

Code: REDSE.3 Disable Datasets

Type: Functional Relevance: Mandatory Technology: QUIBIM Precision

Description:
This application must provide the means to disable a given Dataset of the Repository
Database, so this dataset will not appear on further searching operations. This functionality
is restricted to the Dataset Administrator Role.

5.18. Application Dashboard

Code: REAPP.1 Name: User-Friendly Web Interface

Type: Functional Relevance: Mandatory Technology: Kubeapps

Description:
This application must provide a User-Friendly web interface to manage Standalone
Applications.

Code: REAPP.2 Name: Create Standalone Applications

Type: Functional Relevance: Mandatory Technology: Helm Charts,
Kubeapps

Description:
This application must enable the creation of Standalone Applications, including the
uploading of image containers, Helm charts and additional specification and configuration
files. These functionalities must only be enabled to the Cloud Services and Security
Management Role.

77



D3.4 - Final Platform Design

Code: REAPP.3 Filter and Select Standalone Applications

Type: Functional Relevance: Mandatory Technology: Kubeapps

Description:
This application must offer a set of functionalities to filter and select Standalone
Applications from the Application Registry through a web interface. This must be provided
only to the External Researchers, Data Scientist Role and Application Developer Roles.

Code: REAPP.4 Deployment of Standalone Applications

Type: Functional Relevance: Mandatory Technology: Kubeapps

Description:
This application must expose a web interface to deploy Standalone Applications in the
ChAIMELEON repository cloud resources. The application will enable defining
configuration parameters (such as the dataset id, the resource claim and other access
credentials or configuration options). These functionalities must only be enabled to the
External Researchers, Data Scientist Role and Application Developer Roles.

Code: REAPP.5 Retrieve Access Points and other information from running
Standalone Applications

Type: Functional Relevance: Mandatory Technology: Kubeapps

Description:
This application must offer a web interface to filter applications and list Standalone
Applications access points of running applications. This must be available only to the
External Researchers, Data Scientist Role and Application Developer Roles.

Code: REAPP.6 Release Standalone Applications

Type: Functional Relevance: Mandatory Technology: Kubeapps

Description:
This application must offer a set of functionalities to remove a running Standalone
Application and release the associated resources. This must be available only to the
External Researchers, Data Scientist Role and Application Developer Roles.

Code: REAPP.7 Access Control to Running Standalone Application to their Owners

Type: Functional Relevance: Mandatory Technology: Kubeapps

Description:
The Standalone Applications which are running must only be managed (list access point,
release) by the User which s(he) has deployed it.

78



D3.4 - Final Platform Design

6. Security Considerations
This section describes at architecture level the threat analysis and the recommendations for
the setup and configuration of the components of the architecture regarding security.

6.1. Threat Analysis

In order to identify the risk of intrusions and privacy leakages, we performed an analysis of the
reasonable threats that the platform may face. This threat model is described in this section.

6.1.1. Assumptions

The model considers the following assumptions:

- Users' credentials may be weak or get exposed.
- Resources may not be properly patched and may suffer from vulnerabilities.
- Access to Virtual Machines cannot be granted from inside a Docker container.
- Granting access to the overlay network that connects the containers will not increase

exposure risk.
- The Platform will only run official CHAIMELEON Docker Containers.
- Users have accepted some “Terms of Usage” before accessing the platform. And these

“Terms of Use” will include the obligation to follow a security breach procedure.

These assumptions will be the basis for identifying the threats and the corrective measures to
take into account.

6.1.2. Threats

The threats are those undesired situations that could appear as a consequence of an issue that
could lead to a security breach. The threats are grouped by 5 situations:

- A user may expose his/her data access token to a user adversary, who …
- … could access any data stored on the cloud (s)he is authorised to.
- … could remove any data stored in the cloud by his/her own, although will not be

able to remove general shared data (unless the token is from the administrator,
which should never be used).

- … could update clinical of imaging data fom the Case Explorer.
- ... could not access the VMs where the K8s containers run, nor the ceph

resources.
- … could not access the K8s services for creating, deleting or inspecting any

resource.

- A user may expose his/her IdP credentials to a user adversary, who …
- … could access any K8s job and service deployed and any data stored on their

own, to access or delete the data.
- … could create new resources and even force a DoS on his/her partition of

resources
- ... could not access the VMs where the K8s containers run, nor the ceph

resources.
- … could not exhaust resources from other users or force a huge consumption of

resources.

- VM vulnerability can be exploited or VM credentials from a system administration
obtained by an adversary who ...

79



D3.4 - Final Platform Design

- … could access the services running in the VM, stopping them or even creating
new ones under any user partition.

- … could access data from any resource.
- ... could not create resources in the cloud unless access to the front end is

granted.
- … could not destroy resources in the cloud unless access to the front end is

granted.

- An application developer (or System Administrator) adversary can gain credentials for
building Docker Images...

- … could inject malicious code in the Docker Containers used by the Users and
Data Managers to retrieve access credentials.

- … could inject malicious code in the applications.
- ... could not impersonate the user in the processing cloud.
- … could not access resources from other users.

- Cloud infrastructure credentials from a system administration can be obtained by an
adversary who ...

- … could destroy the virtual infrastructure or create new resources on behalf of the
system administrator.

- … could not easily access data from any resource, enter in the VMs or access the
K8s services. It will require stopping VMs, dumping the disks, mounting on other
resources and inspecting the data to search for the credentials, which requires
inspecting the filesystems of the containers running on the system.

6.1.3. Recommendations

In order to minimise those risks, the threat model identifies the following recommendations that
will be the basis for the technical and operational measures implemented.

- Recommendation for All roles:
- Do not store credentials (including access tokens) in GitLab repositories (even in

private ones).

- Recommendations for System AdminIstrators:
- VMs should be periodically patched (Ubuntu, Docker, Kubernetes).
- SSH access to the Front-end VM is limited to a specific IP range.
- Access to resources is limited to the necessary ports, no SSH access from

outside the UPV is allowed.

- Recommendations for Application Developers:
- Docker images are periodically re-built (automatically) based on official images.

6.2. Technical and Organisational Security Measures

6.2.1. Organisational Security Measures

The organisational security measures are those regulations and procedures that support focus on
increasing the security of the resources and reducing the risk or the liability of the resource
provider. These measures take into account the obligations stated in the regulations covering the
processing and storage of sensitive data within the CHAIMELEON project and other additional
measures addressing the users of the services and data.

80



D3.4 - Final Platform Design

6.2.2. Organisational Security Measures with respect to the Cloud
Infrastructure

The cloud infrastructure is located on the premises of the Grid and High Performance Computing
(GRyCAP) research group from the Institute of Instrumentation for Molecular Imaging (I3M) at the
Universitat Politècnica de València (UPV). These resources have the following restrictions:

- The physical access to the resources is restricted to duly authorised administrative
operators by means of an electronic key. All accesses are logged in including date, time
and electronic key used.

- The administrative access to the computing machines that support the cloud
infrastructure is limited to the GRyCAP system administrators.

- The access to the virtual machines where the services of the CHAIMELEON cloud
infrastructure run is limited to the Cloud Services and Security Manager (although system
administrators may be able to grant access to the resources).

- Any other user could only access the infrastructure through the CHAIMELEON services
(dashboard and datahub) with their specific access credentials described in section 2.

- The passwords will follow the procedures recommended by the UPV
(https://www.upv.es/entidades/ASIC/catalogo/467508normali.html).

The procedures that should be taken into account by the system administrators and the
application managers are the following:

- Keeping the software up to date
- The resources supporting the cloud infrastructure must be proactively patched. In

particular, the system administrators will:
- Patch the operating system of the physical machines at least twice a year

and every time a security patch is released.
- Patch the Virtual Machine Images used in the cloud platform with the

same regularity.
- Patch the underlying services such as OpenStack every time a security

update is available.
- Proactively update the recipes for the software configurations used

(especially Docker, Kubernetes and CEPH).
- The application managers will update the deployment of the Kubernetes, CEPH

and Docker every time a new security patch is available.
- For those purposes, the system administrators will inform the cloud resource

application managers (included in a mailing list) about any important update that
should be taken into account.

- Reducing the surface exposure
- CHAIMELEON cloud infrastructure integrates many services. However, only a

fraction of them need to be accessible from outside of the UPV. In order to provide
access from the Internet, the application manager has to explicitly configure this in
both the Kubernetes cluster and OpenStack. However, this will not be sufficient for
regular (not VPN) access from outside of the UPV and will require opening such a
port in the UPV’s institutional firewall. For this purpose, the Application Manager
has to request it (on writing) to the System Administrator. The system
administrator will submit this request to the UPV’s network administrator team
who may approve or not, depending on the risks.

- Moreover, the UPV will proactively monitor the connections and could switch off
resources if suspicious traffic is taking place.

81

https://www.upv.es/entidades/ASIC/catalogo/467508normali.html


D3.4 - Final Platform Design

6.2.3. Organisational Security Measures with respect to the users of the Cloud
Infrastructure

The users of the cloud infrastructure must sign the Terms of Usage (ToU) when subscribing to
the KeyCloak Authentication and Authorisation service. This ToU includes the following terms:

CHAIMELEON brings together cloud computing and human resources to decision making in
the clinical management of malignant tumors, offering predictive tools to assist diagnosis,
prognosis, therapies choice and treatment follow-up, based on the use of novel imaging
biomarkers, advanced visualization of predictions with weighted confidence scores and
machine-learning based translation of this knowledge into predictors for the most relevant,
disease-specific, Clinical End Points

For this purpose, CHAIMELEON aims at:

- Providing a platform for storing securely anonymised data from oncology.
- Provide a platform for running computational medical imaging biomarkers on the

cloud.

The users of the CHAIMELEON Platform will be application developers and applications
managers that want to support scientists from this community. By registering as a user you
declare that you have read, understood and will abide by the following conditions of use:

1. You shall only use the resources/services to perform work, or transmit or store data
consistent with the stated goals, policies and conditions of use as defined by the body or
bodies granting you access.

2. You shall provide appropriate acknowledgement of support or citation for your use of the
resources/services provided as required by the body or bodies granting you access.

3. You shall not use the resources/services for any purpose that is unlawful and not (attempt
to) breach or circumvent any administrative or security controls.

4. You must not carry out any data processing that leads to the reidentification of the subjects
to which the data belongs. This include crossing of data with other sources of information like
Open Data Platforms.

5. In the event that you need to copy data outside the CHAIMELEON Platform resources for
a processing activity that cannot be done with those resources, you will be responsible for
their custody and agree to delete them completely at the end of the activity.

6. You shall respect intellectual property and confidentiality agreements.

7. You shall protect your access credentials (e.g. private keys or passwords).

8. You shall keep all your registered information correct and up to date.

9. You shall immediately report any known or suspected security breach or misuse of the
resources/services or access credentials to the specified incident reporting locations and to
the relevant credential issuing authorities.

10. You use the resources/services at your own risk. There is no guarantee that the
resources/services will be available at any time or that their integrity or confidentiality will be
preserved or that they will suit any purpose.

82



D3.4 - Final Platform Design

11. You agree that logged information, including personal data provided by you for
registration purposes, may be used for administrative, operational, accounting, monitoring
and security purposes. You agree that this logged information may be disclosed to other
authorised participants via secured mechanisms, only for the same purposes and only as far
as necessary to provide the services.

12. You agree that the body or bodies granting you access and resource/service providers
are entitled to regulate, suspend or terminate your access without prior notice and without
compensation, within their domain of authority, and you shall immediately comply with their
instructions.

13. You are liable for the consequences of your violation of any of these conditions of use,
which may include but are not limited to the reporting of your violation to your home institute
and, if the activities are thought to be illegal, to appropriate law enforcement agencies.

14. You must inform CHAIMELEON platform administrators about any possible security
breach that you could be aware of or you have detected, like possible loss of access
credentials, any misconfiguration or in general any possible security gap.

15. You are aware that information included in CHAIMELEON platform is related personal
data, but anonymised and if you detect any possible remaining personal info or any
possibility of re-identification, you have the duty to inform the system administrators.

16. You must be aware that tracking and tracing procedures of your activity in the
CHAIMELEON platform could be carried out and some of your logging information could be
stored.

6.2.4. Technical Security Measures

The technical security measures aim at reducing the exposure of the platform to the threats and
risks identified in the previous sections.

- Reducing the surface exposure
- CHAIMELEON cloud infrastructure integrates many services. However, only a

fraction of them need to be accessible from outside of the UPV. For this purpose,
we have limited the access by three means:

- Access limitations using the UPV’s institutional firewall. Only the ports 80
(K8s Ingress) and 443 (K8s Ingress) are accessible from outside of the
UPV’s network. This prevents:

- Gaining access through SSH.
- Gaining direct access to the project databases.

- Access limitations through the OpenStack Security Groups firewall. Only
ports 22 (SSH), 80 (K8s Ingress), 443 (K8s Ingress), 6901 (Medexprim),
8443 (Ceph Dashboard), 8800 (IM), 8899 (IM), 9080 (PACS), 9090 (Ceph
Object Gateway), 9443 (PACS), 10000 (Medexprim), 10001 (Medexprim)
10443 (Harbor), 14443 (Notary), and 30443 (K8s Dashboard) are
accessible. These ports are used by the applications deployed in the
cluster. This prevents malicious applications from creating applications
that communicate through other ports.

- Access limitations through the Kubernetes overlay network. The database
services communicate through the overlay network in the specific ports
required and are not available from outside of the Kubernetes cluster.

83



D3.4 - Final Platform Design

- I3M cloud infrastructure resources. The cloud infrastructure dashboard and the
service endpoints are not accessible from outside the UPV.

- Actively monitoring suspicious traffic. The UPV performs an active monitoring of the
network traffic aimed at detecting inbound and outbound abnormal traffic. In case of
suspicious events, corrective measures are automatically applied. Therefore, the UPV
uses heuristics such as the access to ports during short periods of time, abnormal
communication patterns, communication cuts and even MAC spoofing. The corrective
measures include from sending warning messages to the system administrators to
service cuts of a network segment.

- Use of encrypted communication and digital certificates for all the communications
performed among the services, including the traffic in the private networks.

- Anonymous access is only allowed to dataset metadata summaries, which include public,
aggregated metadata according to the FAIR principles.

- Use of OpenID authentication to validate users and KeyCloak roles to authorise them, so
only users included in the KeyCloak can access the CHAIMELEON services. User’s
permissions can be revoked by removing or disabling the membership of the users, so
following accesses will be rejected.

- Session credentials when accessing the Dashboard expire after 10 minutes, and they are
automatically renewed, checking periodically the validity of the credentials.

- Physical access to the resources is restricted. Resources are hosted in a secure room
with electronic keys.

- Kubernetes cluster protection:
- Kubernetes cluster uses OpenID authentication for users.
- Users only can interact with K8s using Kubeapps.
- Role-based access policies (RBAC). User’s actions are delimited by using a

restricted RBAC policies defined by the cloud and security administrators .28

- Isolation of users. Users only can perform the actions defined by the RBAC
policies in their or his namespaces or in a shared namespace between the all
project (chaimeleon-shared).

- The Pod Security Standard confiured is “Baseline” and it is implemented using29

the K8s policy manager Kyverno . Besides, we added more general security30

policies using Kyverno to decrease the amount of attack posibilities.31

Furthermore, we use Kyverno to ensure 1) users only can use as root path of the
ingress their username and, 2) users only can mount the storage using their32

unique GID .33

- A personalised K8s Operator was implemented for ensuring that users that34

request mounting a dataset using K8s can do it.

- Logs of the operations on the different services are recorded for:
- OpenStack services on the OpenStack Platform.
- Kubernetes and CEPH services on the Virtual Cluster.

34 https://github.com/chaimeleon-eu/k8s-chaimeleon-operator
33 https://github.com/chaimeleon-eu/k8s-deployments/blob/master/kube-authorizer/user_creation/rootfs/templates/kyverno-policies-security-context-gid.yml.tpl

32 https://github.com/chaimeleon-eu/k8s-deployments/blob/master/kube-authorizer/user_creation/rootfs/templates/kyverno-policies-ingress.yml.tpl

31 https://github.com/chaimeleon-eu/k8s-deployments/tree/master/kyverno/policies
30 https://kyverno.io/
29 https://kubernetes.io/docs/concepts/security/pod-security-standards/#baseline
28 https://github.com/chaimeleon-eu/k8s-deployments/blob/master/kubernetes-users/authorization.yml

84



D3.4 - Final Platform Design

7. Conclusions
A final design of the CHAIMELEON Repository has been performed through a systematic
and extensive process (see “D3.3. Interim Platform Design” for more details) that took into
account the information on standards and technologies of previous deliverables. This
deliverable performs a thorough process of identification of the expected functionality (User
Actions) of the repository. The CHAIMELEON repository design is based on three main
concepts: a) The CHAIMELEON Repository as a platform to store and process the data; b)
Datasets as research objects comprising a subset of anonymised and annotated data that
has a Persistent Identifier; c) Data Analytics Models trained on the data with a Persistent
Identifier assigned, which can be embedded into tools in a marketplace.

This document is a guideline for the implementation of the repository and all its components.
The document is especially relevant for WP4 members, but also for the other Work Packages
to find the way they could interact with the repository. As the repository will be mainly
developed using tools released under Open-Source licences, the document also serves as a
guide for external developers who would like to contribute to the CHAIMELEON Repository.

The users of the repository are classified into 8 User Roles or user profiles. Each role has a
different way of interacting with the repository (User Actions) and, therefore, will have
different permissions. A user may have multiple roles, but operations are defined at the level
of individual roles to limit permissions and accessibility. These actions trigger interactions
among components defined in the architecture, specified through 34 Use Cases organised in
8 areas: Authentication and authorization, Data Lake Management, Dataset Management,
Processing Application Management, Standalone Application Management, Model
Management, Marketplace Management and Tracing Data.

In the final architecture, the CHAIMELEON Repository identified 5 Platform Applications as
Persistent applications that mainly expose the functionality (User Registration Application,
Case Explorer Application, Marketplace, Dataset Explorer Application and Application
Dashboard), 6 Services that interact directly with the resources (Authentication Service, Data
Ingestion/Access Service, Dataset Service, Tracer Service and Orchestrator Service) and 6
Storages (for user data, clinical data, datasets, application binaries, source code and
traceability). This process ended up with 85 requirements covering 15 transversal
requirements, which are applied to all Storages, Services and Applications, 28 requirements
applied to the Storage, 18 for Services and 24 for Platform Applications.

One of the key aspects of the repository is traceability. Despite the use of anonymised data,
the repository restricts the processing of the data to its local environment, so data is not
downloaded outside of the platform. Even in this case, the repository annotates the main
research objects and actors (datasets, models, users and applications) with persistent
identifiers and keeps track of the interactions. This increases the trustworthiness of the
repository and provides higher confidence to data providers.

This final architecture of the CHAIMELEON Repository will be implemented in the frame of
WP4 and will be exposed to the user community as planned in the project.

85


